首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 734 毫秒
1.
以竹炭为固相萃取吸附材料,考察了其对环境水样中16种多环芳烃的吸附富集能力,采用DB-35MS弹性石英毛细管色谱柱对16种多环芳烃进行分离,气相色谱-质谱联用法对多环芳烃进行定性及定量分析.结果表明,1 000 mg竹炭作为固相萃取吸附剂,10 mL二氯甲烷作为洗脱剂,上样速率5 mL/min,水样中甲醇体积分数为15%的条件下,16种多环芳烃有较好的回收率,竹炭固相萃取柱的穿透体积大于500 mL,通过实验比较竹炭的萃取回收率优于商品化的C18固相萃取柱.16种多环芳烃的质量浓度在10 ~500 ng/L范围内与峰面积的线性关系良好(苯并(k)荧蒽,苯并(a)芘,二苯并(a,h)蒽,苯并(g,h,i)苝为25 ~500 ng/L),相关系数为0.983 6 ~0.998 4.方法的检出限为0.6 ~8.0 ng/L,实际水样的加标回收率为67% ~113%,相对标准偏差为2.1% ~11.3%.通过对白沙河河水的分析表明,该方法能够满足实际水样的测定,竹炭可以作为固相萃取材料应用于水中16种多环芳烃的分析测定.  相似文献   

2.
建立了pH依赖型脂肪酸辅助的分散液-液微萃取与高效液相色谱联用测定水中菲、芘、苊3种多环芳烃(PAHs)的新方法。对影响前处理方法的因素进行了考察,在55μL正庚酸、50μL 28%(质量分数)浓氨水、500μL 98%(质量分数)浓硫酸、离心时间3 min的萃取条件下,采用Diamonsil C_(18)柱(150 mm×4.6 mm,5μm)分离,乙腈-水等度洗脱的方式测定了自来水、井水和海水样品中的3种多环芳烃。结果显示,3种多环芳烃在20~500μg/L范围内具有良好的线性关系,相关系数不小于0.999 3,3种目标化合物的检出限为9.18~13.11μg/L。实际样品中3种多环芳烃在3个浓度水平的加标回收率为87.9%~110%,RSD均不大于3.0%。该方法将脂肪酸作为萃取剂,与HPLC联用实现了多环芳烃的富集与检测,为环境水样中多环芳烃的检测提供了新的前处理方法。方法简便、快速,实验过程仅需6 min即可实现水样中多环芳烃的定量测定。  相似文献   

3.
ACF-SPME检测海洋水体中的多环芳烃   总被引:1,自引:0,他引:1  
使用新型活性炭纤维(ACF)作为固相微萃取(SPME)技术的萃取纤维,检测了海水中的多环芳烃。得到ACF-SPME萃取多环芳烃的最优条件为:在搅拌条件下,盐浓度10%,pH3,温度60℃水浴中直接萃取40min。并确定16种多环芳烃的RSD(n=5)为1.8%~10%、线性范围为0.1~500μg/L、检出限为0.1~100μg/L。对东海近海海水进行了分析,结果表明海水中PAHs浓度在检测限以下,同时进行加标回收实验,得到16种多环芳烃的回收率在80%~128%。  相似文献   

4.
制备了一种二维的[Zn(benzotriazole)2]n配位聚合物,并经过XRD、SEM及元素分析法的表征,将其用于富集萃取环境水样中的6种重质多环芳烃,该配合物对于含多苯环的化合物显示出较强的吸附力。实验中分别对填料用量、淋洗剂、洗脱剂的种类及用量、穿透体积等参数进行考察,并将其与同等上样量及加标量的C18固相萃取小柱进行对比,建立了水样中6种多环芳烃的气相色谱-质谱联用检测方法。结果表明,使用200mg[Zn(benzotriazole)2]n配合物作为固相萃取填料,以10%甲醇为淋洗剂,0.5mL丙酮和5mL二氯甲烷作为洗脱剂,在上样体积为200mL、流速为4mL/min的条件下,6种多环芳烃均具有较高的回收率。荧蒽(Flan)、苯并(b)荧蒽(BbF)、苯并(g,h,i)芘(BghiP)的质量浓度在20~1000μg/L范围内,苯并(k)荧蒽(BkF)、苯并(a)芘(BaP)、茚并(1,2,3-Cd)芘(InP)在10~500μg/L范围内与峰面积呈良好线性关系,相关系数为0.9968~0.9993。方法的检出限为0.45~10.7ng/L,加标回收率为77%~112%,相对标准偏差为3.8%~8.5%。结果表明,该方法具有成本低、灵敏度高等特点,能够满足实际水样中6种多环芳烃的测定要求。  相似文献   

5.
Zhu B  Chen H  Li S 《色谱》2012,30(2):201-206
以密度小于水的轻质溶剂为萃取剂,建立了无需离心步骤的溶剂去乳化分散液-液微萃取-气相色谱(SD-DLLME-GC)测定水样中多环芳烃的新方法。传统分散液-液微萃取技术一般采用密度大于水的有机溶剂为萃取剂,并需要通过离心步骤促进分相。而本方法以密度比水小的轻质溶剂甲苯为萃取剂,将其与丙酮(分散剂)混合并快速注入水样,获得雾化体系;然后注入乙腈作为去乳化剂,破坏该雾化体系,无需离心,溶液立即澄清、分相;取上层有机相(甲苯)进行GC分析。考察了萃取剂、分散剂、去乳化剂的种类及其体积等因素对萃取率的影响。以40 μL甲苯为萃取剂,500 μL丙酮为分散剂,800 μL乙腈为去乳化剂,方法在20~500 μg/L范围内呈现出良好的线性(r2=0.9942~0.9999),多环芳烃的检出限(S/N=3)为0.52~5.11 μg/L。用所建立的方法平行测定5份质量浓度为40 μg/L的多环芳烃标准水样,其含量的相对标准偏差为2.2%~13.6%。本法已成功用于实际水样中多环芳烃的分析,并测得其加标回收率为80.2%~115.1%。  相似文献   

6.
GC-MS法快速测定食品接触材料油墨中16种多环芳烃   总被引:1,自引:0,他引:1  
以正己烷超声提取,弗罗里硅土固相萃取柱净化,以正己烷-二氯甲烷溶液(体积比1:1)洗脱,用GC-MS联用仪SIM模式外标法定量测定食品接触材料油墨中16种多环芳烃.在优化条件下,16种多环芳烃的浓度在0.1~4.0 μg/mL范围内与色谱峰面积呈良好的线性关系,线性相关系数大于0.995,检出限为0.12~3.24 ng/L.加标回收率为77.24%~ 104.76%,测定结果的相对标准偏差为1.05%~1.69%(n=6).该方法适用于食品接触材料油墨中PAHs的日常检测.  相似文献   

7.
熊力  王金成 《分析测试学报》2019,38(11):1335-1339
建立了自来水中6种氯代多环芳烃和15种多环芳烃的凝固漂浮有机液滴-分散液液微萃取高效液相色谱分析方法,并探讨了萃取剂种类和用量、分散剂种类和用量、氯化钠含量及涡旋振荡时间等因素对萃取效率的影响。优化后的萃取实验条件为:10μL十二醇为萃取溶剂,500μL甲醇为分散溶剂,6%NaCl,涡旋振荡时间2 min。目标化合物经多环芳烃专用柱(SUPELCOSILTMLC-PAH,150 mm×4.6 mm,5μm)分离后,外标法定量。结果表明,21种目标化合物在一定质量浓度范围内线性良好,相关系数均不低于0.999;在低、中、高3个加标水平下的回收率为70.6%~98.7%,相对标准偏差(RSD)为2.0%~10%;方法的检出限(LOD,S/N=3)为0.000 7~0.009μg/L,定量下限(LOQ,S/N=10)为0.002 2~0.028μg/L。可用于自来水中氯代多环芳烃和多环芳烃的分析检测。  相似文献   

8.
建立塑胶玩具中多环芳烃的气相色谱–质谱检测方法。样品用四氢呋喃溶剂超声提取60 min,提取液以乙腈净化。以DB–5MS色谱柱为分离柱,柱温程序:70℃保持1 min,以10℃/min升温至240℃,保持2 min,然后以8℃/min升温至280℃,保持5 min。16种多环芳烃的质量浓度在0.002~0.18 mg/L范围内线性良好,相关系数均大于0.991,定量限为0.12~0.20 mg/kg。测量结果的相对标准偏差为4.2%~7.4%(n=6),加标回收率为84.9%~116.7%。该方法简单、快速、准确、重现性好,能够满足目前对塑胶玩具中多环芳烃的检测要求。  相似文献   

9.
建立了采用自动索氏萃取-气相色谱-质谱联用检测电子电气产品中多环芳烃和多氯联苯的方法.通过以V(丙酮)∶V(正己烷)=1∶1为溶剂,一次自动索氏提取材料中多环芳烃和多氯联苯,分别采用H2SO4预处理,再用硅胶柱净化,气相色谱-质谱联用仪检测,该方法对多环芳烃检测限为0.2 mg/kg、多氯联苯检测限为0.1 mg/kg,加标回收率在60%~99%之间,相对标准偏差(RSD)均小于5%,多环芳烃的线性范围在0.1~100 mg/L,多氯联苯的线性范围在0.4~250 mg/L,相关系数(r)均大于0.999.实验结果表明方法能满足电子电气产品材料中多环芳烃和多氯联苯的检测要求.  相似文献   

10.
采用超声波提取,气相色谱–质谱联用法检测,建立城市污水处理厂脱水污泥中16种多环芳烃的测定方法。以二氯甲烷–正己烷(体积比为1∶1)为提取剂,超声波提取20 min。在优化的仪器条件下,16种多环芳烃的质量浓度在0.05~100μg/m L范围内与色谱峰面积呈良好线性关系(r≥0.999 3),方法的检出限在0.12~0.38μg/kg之间,加标回收率为80%~120%,测定结果的相对标准偏差小于4.5%(n=6)。该方法样品前处理简单、重现性好、检出限低、准确度高,适用于城市污水处理厂脱水污泥中16种多环芳烃的测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号