首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently, the ferroelectromagnet YMnO3 has been the focus of interest because it exhibits both antiferromagnetism (Néel temperature 80 K) and ferroelectricity (Curie temperature 914 K). There have been no reports of complete YMn1−xMxO3 solid solutions in which substitution of the foreign M cation preserves the hexagonal P63cm structure. In contrast there exist several homeotypic phases with the general formula, Ln1+nCunMO3+3n (n=1 (M=Ti), 2 (M=V) and 3 (M=Mo); Ln: lanthanide). Several YMn1−x(Cu3/4Mo1/4)xO3 compounds have been synthesized. The solid solution, from YMnO3 (x=0) to YCu3/4Mo1/4O3 (x=1) has been characterized by X-ray diffraction and transmission electron microscopy study. For 0<x<0.9, the compounds are found to crystallize in the non-centrosymmetric structure, space group P63cm, of YMnO3. The Mn-free end member, x=1, crystallizes in a complex multiple cell, the superstructure being associated to Cu3+/Mo6+ cationic ordering. Dilution of the Mn3+ magnetic array by the paramagnetic (Cu2+) and diamagnetic (Mo6+) cations is found to decrease the antiferromagnetic ordering temperature and it becomes undetectable for x0.5 compositions.  相似文献   

2.
The equilibrium structures and relative stabilities of BN-doped fullerenes C70−2x(BN)x (x=1–3) have been studied at the AM1 and MNDO level. The most stable isomers of C70−2x(BN)x have been found out and their electronic properties have been predicted. The calculation results show that the BN substituted fullerenes C70−2x(BN)x have considerable stabilities, though they are less stable than their all carbon analog. For C68BN, the isomers whose BN is located in the most chemically active bonds of C70 (namely B and A) are among the most stable species, of which B is predicted to be the ground state. The stabilities of C68BN decrease and the dipole moments increase with increasing the distance between the heteroatoms. For C66(BN)2, the lowest energy species is the isomer in which the B–N–B–N bond is formed; For C64(BN)3, the most stable species should have three BN units located in the same hexagon to form B–N–B–N–B–N ring. The ionization potentials and the affinity energies of the most stable species of BN-doped C70 are almost the same as those of C70 because of the isoelectronic relationship. The ionization potentials and affinity energies depend on the relative position of the heteroatoms in C68BN, the chemical reactivities of the isomers whose heteroatoms are well separated should differ significantly from their all carbon analog.  相似文献   

3.
Phase equilibria in the LaFeO3–“LaNiO3” were studied at 1100 °C in air. The samples were synthesized by standard ceramic and/or solution route via nitrate or citrate precursors. According to the results of XRD it was found that the homogeneity ranges of LaFe1−xNixO3−δ solid solution lay within 0.0 ≤ x ≤ 0.4 (sp.gr. Pbnm) and 0.6 ≤ x ≤ 0.8 (sp.gr. ). The structural parameters (bond lengths, atom coordinates) for the single-phase samples were refined using Rietveld analysis. The unit cell parameters versus LaFe1−xNixO3−δ composition are presented.  相似文献   

4.
The magnetic, electronic, and structural properties of the solid solutions LaxSr1−xRuO3 and LaxCa1−xRuO3 have been studied by 99Ru Mössbauer spectroscopy and other techniques. The LaxCa1−xRuO3 phases are reported for the first time and have been shown by powder X-ray diffraction measurements to be orthorhombically distorted perovskites. Electrical resistivity measurements on compacted powders show that all the phases are metallic with p 10−3, ohm-cm. Progressive substitution of Sr2+ by La3+ in ferromagnetic SrRuO3 leads to a rapid collapse of the magnetic hyper-fine splitting at 4.2°K. For x = 0.25 some ruthenium ions still experience a magnetic field but for 0.4 x 0.75 only single, narrow resonance lines are observed, consistent both with the complete removal of the ferromagnetism and with the presence of an averaged ruthenium oxidation state in each phase, i.e., Lax3+Sr1−x2+Ru(4−x)+O3 rather than Lax3+Sr1−x2+Rux3+Ru1−x4+O3. LaRuO3 and CaRuO3 both give essentially single-line spectra at 4.2°K, indicating that the ruthenium ions in these oxides are not involved in long-range antiferromagnetic order but are paramagnetic. The solid solutions LaxCa1−xRuO3 (0 < x 0.6) give sharp symmetrical singlets with chemical isomer shifts (relative to the Ru metal) which move progressively from the value characteristic of Ru4+ (−0.303 mm sec−1) toward the value for Ru3+ (−0.557 mm sec−1), consistent with the presence of intermediate ruthenium oxidation states in these phases also.  相似文献   

5.
A new NASICON-related structure of lithium titanium phosphate Li2.72Ti2(PO4)3 has been determined. This compound crystallizes in an orthorhombic system, Pbcn, with a = 12.064 (3) Å, b = 8.663 (3) Å, c = 8.711 (4) Å, V = 910.4 (8) Å3, and Z = 4. The single crystal structure of this novel mixed valent titanium(III/IV) phosphate reveals one titanium atom per asymmetric unit. Two lithium sites are characterized by a pair of distorted polyhedra, Li(1)O4 and Li(2)O5, which share a common edge resulting in a short Li(1) … Li(2) distance, i.e., 2.29 (5) Å. Magnetic susceptibility and microprobe analysis confirmed the structural composition. The room temperature ionic conductivity is comparable with that of the known Li1+xTiIV2−xInIIIx(PO4)3, which suggests possible fast ionic conductivity.  相似文献   

6.
Three tetranuclear clusters [Ru4H4(CO)11(PPh3)] (1), [Ru4H2(CO)12(PPh3)] (2) and [Ru3IrH(CO)12(PPh3)] (3) were formed in the reaction of [Ir(CO)Cl(PPh3)2] and Na[Ru3H(CO)11] in tetrahydrofuran. Complexes 1–3 were characterized by IR and 1H and 31P NMR, and the structure of the clusters was confirmed by single crystal X-ray analysis. In 2 and 3 one of the carbonyls bridges between two ruthenium atoms; otherwise the compounds contain only terminal carbonyls.  相似文献   

7.
The compositions in the YBa2−xLaxCu3O7−δ (0x0.2) system were prepared by the solid state reaction, employing a novel high-temperature oxygen sintering route. The modified sintering route yields dense slab like microstructures with large grains. The decomposition (incongruent melting) temperature of the YBa2Cu3O7−δ (Y-123) phase was found to shift to higher temperatures with increasing oxygen partial pressure and lanthanum content. Structure remained orthorhombic up to x=0.2 with a decrease in the orthorhombic strain ((ba)/b). Iodometric titration indicated a systematic increase in the oxygen content with increasing lanthanum content. Thermo-gravimetric studies in various oxygen partial pressures revealed that the oxygen diffusion in to the YBa2Cu3O7−δ (δ>0.5) lattice is an exothermic event and takes place at temperatures not less than 573 K. High-temperature thermal-expansion measurements in air indicated that the nonlinearity in thermal expansion behaviour was reduced by the substitution of lanthanum.  相似文献   

8.
Na2Mn2(1 − x)Cd2xFe(PO4)3 (0 ≤ x ≤ 1) phosphates were prepared by solid state reaction and characterized by powder X-ray diffraction, magnetic susceptibility and Mössbauer spectroscopy. The X-ray diffraction patterns indicated the formation of a continuous solid solution which crystallizes in the alluaudite structural type characterized by the general formula X(2)X(1)M(1)M(2)2(PO4)3. The cation distribution, deduced from a structure refinement of the x = 0, 0.5 and 1 compositions, is ordered in the X(2) sites and disordered in the remaining X(1), M(1) and M(2) sites. The magnetic susceptibility study revealed an antiferromagnetic behaviour of the studied compounds. The 57Fe Mössbauer spectroscopy confirmed the structural results and proved the exclusive presence of Fe3+ ions.  相似文献   

9.
The SrMn1−xFexO3−δ (x=1/3, 1/2, 2/3) phases have been prepared and are shown by powder X-ray and neutron (for x=1/2) diffraction to adopt an ideal cubic perovskite structure with a disordered distribution of transition-metal cations over the six-coordinate B-site. Due to synthesis in air, the phases are oxygen deficient and formally contain both Fe3+ and Fe4+. Magnetic susceptibility data show an antiferromagnetic transition at 180 and 140 K for x=1/3 and 1/2, respectively and a spin-glass transition at 5, 25, 45 K for x=1/3, 1/2 and 2/3, respectively. The magnetic properties are explained in terms of super-exchange interactions between Mn4+, Fe(4+δ)+ and Fe(3+)+. The XAS results for the Mn-sites in these compounds indicate small Mn-valence changes, however, the Mn-pre-edge spectra indicate increased localization of the Mn-eg orbitals with Fe substitution. The Mössbauer results show the distinct two-site Fe(3+)+/Fe(4+δ)+ disproportionation in the Mn- substituted materials with strong covalency effects at both sites. This disproportionation is a very concrete reflection of a localization of the Fe-d states due to the Mn-substitution.  相似文献   

10.
The structural evolution with pressure of six perovskites in the system La1−xNdxGaO3 with x=0.00, 0.06, 0.12, 0.20, 0.62 and 1.00 have been determined by single-crystal diffraction. At room pressure, all six samples have Pbnm symmetry. The room-pressure bulk moduli vary only slightly with composition, between K0T=169(4) and 177(2) GPa, with . As pressure is increased there is significant compression of the octahedral Ga–O bonds, the tilts of the GaO6 octahedra decrease and the structures evolve towards higher symmetry. At room conditions the average Ga–O bond length increases with increasing compositional parameter x. However, the GaO6 become stiffer with increasing x; the Ga–O bonds thus become stiffer as they become longer. Bond strengths in the octahedra in perovskites are therefore not a simple function of bond lengths but depend also upon the extra-framework cation.Phase transitions to R-3c symmetry occur at 2.2 GPa in end-member LaGaO3, at 5.5 GPa in the x=0.06 sample, at 7.8 GPa for x=0.12, and at 12 GPa for x=0.20. No evidence of the transition in the x=0.62 or 1.00 samples was found by X-ray diffraction to 9.4 or 8.0 GPa, respectively, or by Raman measurements of NdGaO3 up to 16 GPa. The transition pressure therefore increases with increasing Nd content (increasing x) at approximately 0.45 GPa per 0.01 increment in x, at least up to x=0.20. Compression of the R-3c phase of LaGaO3 above the transition results in no significant changes in the tilt angle of the octahedra. The structural behavior of all six samples at high pressures is the result of the GaO6 octahedra being softer than the extra-framework (La, Nd)O12 site. The results therefore demonstrate that the evolution of solid-solution perovskites at high pressures follow the same general principles recently elucidated for end-member compositions.  相似文献   

11.
Potassium hafnium–zirconium phosphates, K2Hf1−xZrx(PO4)2 and KHf2(1−x)Zr2x(PO4)3, are broad-band UV-emitting phosphors. At room temperature, they have emission peak maxima at approximately 322 and 305 nm, respectively, under 30 kV peak molybdenum X-ray excitation. Both phosphors demonstrate luminescence efficiencies that make them up to 60% as bright as commercially available CaWO4 Hi-Plus. The solid-state and flux synthesis conditions, and X-ray excited UV luminescence of these two phosphors are discussed. Even though the two compounds have different atomic structures, they contain zirconium in the same active luminescence environment as that found in highly efficient UV-emitting BaHf1−xZrx(PO4)2. All the three materials have hafnium and zirconium in octahedral coordination via oxygen-atom corner sharing with six separate PO4 tetrahedra. This octahedral Zr(PO4)6 moiety appears to be an important structural element for efficient X-ray excited luminescence, as are the edge-sharing octahedral TaO6 chains for tantalate emission.  相似文献   

12.
Compounds of the system Li1+ x M x Ti2– x (PO4)3 (where M=Sc, Al, Fe, Y; x=0.3) were synthesized by a solid-state reaction and studied by X-ray diffraction. The ceramic samples were sintered and investigated by complex impedance spectroscopy in the frequency range 106–1.2×109 Hz in the temperature range 300–600 K. Two relaxation dispersions related to the fast Li+ ion transport in bulk and grain boundaries were found. The activation energies of the bulk conductivity and relaxation frequency were obtained from the slops of Arrhenius plots. The values of the activation energies of the bulk ionic conductivity and relaxation frequency were found to be very similar in all the materials investigated. That can be attributed to the fact that the temperature dependences of the bulk conductivity are caused only by the mobility of the fast Li+ ions, while the number of charge carriers remains constant with temperature. Electronic Publication  相似文献   

13.
A new defect solid solution, the series Na7/8(FeIII7/8+xTiIV9/8−2xSbVx)O4, was synthesized. Its homogeneity range is rather wide: 0 <- x ≤ 0.33. The incorporation of SbV gives rise to a progressive increase of the parameters of the orthorhombic unit cell. X-ray powder structure calculations point to a partial occupancy of the large double tunnels in a quadruple rutile-chain structure. A significant ordering of cations over the octahedral framework is observed, owing to a TiIV---SbV segregation. Electrical measurements emphasize a cationic conductivity, mainly related to a 1D motion of NaI cations. A transition from a low activation energy process—EA ≤ 0.20 eV—to a high activation energy one—EA ≈ 0.75 eV—systematically occurs at T ≈ 440°C, independent of the SbV concentration. A possible skew motion from a half tunnel to another one is proposed as a tentative explanation of the high-temperature conductivity mechanism.  相似文献   

14.
A careful transmission electron microscopy (TEM) investigation of an incommensurately modulated member of the (Bi1−xSrx)Fe3+O3−x/2x/2, 0.2≤x≤0.67, solid solution has been carried out. High resolution (HR) TEM imaging is used to show the presence of at least 6-fold twinning on a rather fine (5 nm) scale. The (3+1)-d superspace group symmetry is suggested to be or one of the non-centrosymmetric sub-groups thereof, namely , , and . A superspace construction is then used to propose the nature of the local compositional ordering and, hence, of the oxygen-deficient slab that intergrows with the perovskite slab to produce the observed solid solution phase. The proposed compositional superspace atomic surfaces can be used to produce model structures at any composition within the solid solution range.  相似文献   

15.
Dielectric studies performed on the solid solution Ba1−xNaxTi1−xNbxO3 (BNTN) show that all compositions (x= 0.1, 0.15, 0.2, 0.4, 0.5 and 0.025, 0.05, 0.6, 0.7, 0.8) exhibit a ferroelectric–paraelectric phase transition where the Curie temperature is a function of the composition. The specimens with composition BNTN (x= 0.05, 0.1, 0.15, 0.2) have been refined by the Celref method from X-ray powder diffraction data. The evolution of dielectric constant as a function of temperature and frequency in the range 77–500 K and 20–2 × 105 Hz, respectively, show that these ceramics present the classical ferroelectric character when 0x<0.075 and 0.55<x1 and relaxor character when 0.075x0.55.  相似文献   

16.
The electric and magnetic properties of the perovskites Nd0.8Na0.2Mn(1−x)CoxO3 (0x0.2) prepared by the usual ceramic procedure were investigated. The insulator-to-metal-like (IM) transition, closely related to a ferromagnetic arrangement, was revealed for the composition of x=0.04 and a similar tendency was detected for x=0. The insulating behavior persists down to low temperatures for higher contents of cobalt ions in spite of the transition to the bulk ferromagnetism. The properties are interpreted in terms of the steric distortion, tilting of the Mn(Co)O6 octahedra and the double-exchange interactions of the type Mn3+–O2−–Mn4+and Mn3.5+δ–O2−–Co2+, respectively. Presence of antiferromagnetic domains in the ferromagnetic matrix for the most of cobalt-substituted samples is supposed.  相似文献   

17.
The possibility to synthesize layered oxycarbonates, with nominal composition Sr4Fe2−xMnxO6CO3 involving trivalent manganese, with 0≤x≤1.5, is reported for the first time. The structural study of Sr4FeMnO6CO3 using NPD, HREM, Mössbauer and XANES, shows that this phase is closely related to n=3 member of the Ruddlesden–Popper family. It derives from the latter by replacing the middle layer of transition metal octahedra by triangular CO3 groups, with two different “flag” and “coat hanger” configurations. The magnetic order is antiferromagnetic and fundamentally different from the magnetic behavior of Sr4Fe2O6CO3.  相似文献   

18.
19.
The development of cocatalysts promoting overall water splitting on (Ga1−x Zn x )(N1−x O x ) solid solution photocatalyst is presented. The (Ga1−x Zn x )(N1−x O x ) is a stable visible-light-driven photocatalyst for stoichiometric water splitting upon loading with a suitable nanoparticulate cocatalyst. Loading with a combination of Cr and Rh oxides, Rh2−y Cr y O3, is demonstrated to raise the quantum efficiency of (Ga1−x Zn x )(N1−x O x ) for overall water splitting to 2.5% at 420–440 nm. This represents a 10-fold increase in efficiency over the highest efficiency previously obtained using nanoparticulate RuO2 as a cocatalyst. In addition to the composition, the dispersion and size of cocatalyst nanoparticles are identified as important factors affecting the degree of enhancement for stoichiometric water splitting. Kazuhiko Maeda—Research Fellow of the Japan Society for the Promotion of Science (JSPS).  相似文献   

20.
Crystal structure, redox, and magnetic properties for the Pr1−xSrxFeO3−δ solid-solution phase have been studied. Oxidized samples (prepared in air at 900°C) crystallize in the GdFeO3-type structure for 0≤x≤0.80, and probably in the Sr8Fe8O23-type (unpublished) structure for x=0.90. Reduced samples (containing virtually only Fe3+) crystallize as the perovskite aristotype for x=0.50 and 0.67 with randomly distributed vacancies. The Fe4+ content increases linearly in the oxidized samples up to x≈0.70, whereupon it stabilizes at around 55%. Antiferromagnetic ordering of the G type is observed for oxidized samples (0≤x≤0.90) which show decreasing Néel temperature and ordered magnetic moment with increasing x, while the Néel temperature is nearly constant at 700 K for reduced samples. Electronic transitions for iron from an average-valence state via charge-separated to disproportionated states are proposed from anomalies in magnetic susceptibility curves in the temperature ranges 500–600 K and 150–185 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号