首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following the approach of Adamo–Newman–Kozameh (ANK) we derive the equations of motion for the center of mass and intrinsic angular moment for isolated sources of gravitational waves in axially symmetric spacetimes. The original ANK formulation is generalized so that the angular momentum coincides with the Komar integral for a rotational Killing symmetry. This is done using the Winicour–Tamburino Linkages which yields the mass dipole-angular momentum tensor for the isolated sources. The ANK formalism then provides a complex worldline in a fiducial flat space to define the notions of center of mass and spin. The equations of motion are derived and then used to analyse a very simple astrophysical process where only quadrupole and octupole contributions are included. The results are then compared with those coming from the post newtonian approximation.  相似文献   

2.
T.T Chia 《Annals of Physics》1977,103(1):233-250
An expression for the quadrupole moment of any two-body system with structure is derived from a “paralel axes” theorem. Within the weak-field limit of the theory of general relativity, expressions for the gravitational radiation flux of energy and angular momentum from two particles or two spherically symmetric bodies in arbitrary plane motion arising from any type of forces are consequently obtained in terms of time derivatives of the relative coordinates of the system. An estimate of the gravitational flux from any plane motion follows. In particular, the flux from systems with Keplerian and straight-line motion are deduced as special cases. For the general problem of a two-body system with intrinsic quadrupole moment (due to deviation from spherical symmetry), it is found that in addition to the flux from the orbital and the spin motion there is another source of flux—the interaction flux. This is shown explicitly in two special cases—the system of a particle moving in the plane of symmetry of a Jacobi ellipsoid, and that of two spinning rigid rods in plane circular motion with parallel spin and orbital angular momentum. The interaction flux is regarded as the result of interaction of the bodies with gravitational waves. An outline of the method for the calculation of gravitational radiation flux from an n-body system is given. For a three-body system—an astrophysically interesting situation—this is worked out in detail. It is seen that the presence of an unsuspected third body can, by virtue of the interaction power term, increase the generation of gravitational waves significantly.  相似文献   

3.
The energy and angular momentum flux carried by gravitational waves from a spinning rod are calculated exactly in the weak field limit of general relativity. It is shown that contrary to common belief, the energy and angular momentum flux are not proportional and the energy and angular momentum equations governing the evolution of the rod are not identical. The spinning rod does not remain rigid: Its length increases. Both the angular deceleration and the rate of change of length are dependent on the nature of the material of the rod, and these rates are small, as expected.  相似文献   

4.
A system of coupled point masses under the influence of gravitational waves is considered. By means of the geodesic deviation equation as the equation of motion it is shown, taking into account the second order small terms, that there exist forces which cause the acceleration of the system in the longitudinal direction. The longitudinal force is due to the fact that simultaneously with energy momentum is also absorbed from waves. It is proved directly on the basis of the equations of motion of the point masses that the energy and momentum absorbed by the test system obey the special relativistic relationship of a zero rest mass particle. The case when the Weber oscillator moves at a relativistic speed with respect to the source of gravitational waves is also examined. In this case, the absorption of energy and momentum by the Weber oscillator is much larger or smaller compared to the stationary situation.  相似文献   

5.
The ADM Hamiltonian for a many-particle system is calculated up to the postlinear approximation, i.e., to the approximation that both the equations of motion for the particles and the equations of motion for the gravitational field in case of no-incoming radiation correctly result up to the postlinear approximation. The relation of this Hamiltonian to the ADM Hamiltonian obtained by a post-Newtonian approximation scheme which was applied up to the first radiation-reaction and radiation levels is discussed. From here the standard formulas for the mechanical angular momentum and energy losses as well as the radiated energy and angular momentum are deduced. Background logarithmic and logarithmic radiative terms are shown to be not present at our approximation if the condition of no-incoming radiation is fulfilled.  相似文献   

6.
In the interaction of molecules with light endowed with orbital angular momentum, an exchange of orbital angular momentum in an electric dipole transition occurs only between the light and the center of mass motion; i.e., internal "electronic-type" motion does not participate in any exchange of orbital angular momentum in a dipole transition. A quadrupole transition is the lowest electric multipolar process in which an exchange of orbital angular momentum can occur between the light, the internal motion, and the center of mass motion. This rules out experiments seeking to observe exchange of orbital angular momentum between light beams and the internal motion in electric dipole transitions.  相似文献   

7.
8.
We study gravitational radiation reaction in the equations of motion for binary systems with spin-orbit coupling, at order (v/c)7 beyond Newtonian gravity, or O(v/c)2 beyond the leading radiation reaction effects for non-spinning bodies. We use expressions for the energy and angular momentum flux at infinity that include spin-orbit corrections, together with an assumption of energy and angular momentum balance, to derive equations of motion that are valid for general orbits and for a class of coordinate gauges. We show that the equations of motion are compatible with those derived earlier by a direct calculation.  相似文献   

9.
The energy and angular momentum carried by gravitational waves of anN-body system has been extensively studied by the author. In this paper the linear momentum, within general relativity, is investigated by studying waves emitted from a source consisting ofN-particles moving under their own gravitation.  相似文献   

10.
In this paper the external field of a bounded source emitting gravitational radiation has been considered. A successive approximation method has been used to integrate the Einstein equations in Bondi's coordinates. A method of separation of angular variables has been worked out and the approximate Einstein equations have been reduced to the key equations (3.8)–(3.10). The losses of mass, momentum, and angular momentum due to gravitational multipole radiation have been found. It has been demonstrated that in the case of proper treatment a real mass occurs instead of a mass aspect in a solution of the Einstein equations. In Appendix C Bondi's news function has been given in terms of sources.  相似文献   

11.
The effect of the angular momentum density of a gravitational source on the times of flight of light rays in an interferometer is analyzed. The calculation is made imagining that the interferometer is at the equator of an axisymmetric steadily rotating gravity source. In order to evaluate the size of the effect in the case of the Earth a weak field approximation for the metric elements is introduced. For laboratory scales and non-geodesic paths the correction due to the angular momentum turns out to be comparable with the sensitivity expected in gravitational waves interferometric detectors, whereas it drops under the threshold of detectability when using free (geodesic) light rays.  相似文献   

12.
We obtain an integral form of the Papapetrou equations, which describes the motion of an extended body in an external gravitational field. Using the Fock method, we calculate an explicit form for the components of the spin tensor and derive relativistic equations of rotational motion in the Schwarzschild space V4. We show that the spin of the body becomes proportional not only to the angular velocity but also to the angular momentum. Thus, induced rotation also follows from the Papapetrou equations.Astrophysics Institute, Kazan Academy of Sciences. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 117–124, October, 1992.  相似文献   

13.
A collective phase space of dimension 12 is introduced to study a classical model of nuclear collective motion. The model employs the 6 components of the coordinate quadrupole and 6 corresponding generalized momenta and can be related to properties of closed-shell nuclei. Vibrational and rotational coordinates are introduced, and purely rotational solutions are studied. The model demonstrates hamiltonian non-rigid motion with a fixed shape of the nucleus. The relation between the coordinate quadrupole tensor and the ellipsoids related to the angular momentum and angular velocity is analyzed for simple forms of the collective potential.  相似文献   

14.
This work starts by generalizing in a gravitational field the fundamental quantum mechanical commutation relations between the coordinates of a charged test particle and its momentum. Assuming that the components of the momentum of this test charge obey a noncommutative algebra in the presence of an electromagnetic field, it is proved that the commutator can be identified with the electromagnetic field tensor. Using these results, the equation of motion of this charged object in the presence of both the electromagnetic and gravitational fields is derived from their field equations. In this work, the laws of motion of a particle in the electromagnetic and gravitational fields has been unified with the field equations. Although the field equations themselves are not directly unified, this work strongly suggests that the scheme may act as a possible framework for the unification of at least gravitational and electromagnetic interactions.  相似文献   

15.
We show that gravitational waves which possess a non‐vanishing Riemann tensor Riklm ≠ 0 always carry energy‐momentum and angular momentum. Our proof uses canonical superenergy and supermomentum tensors for the gravitational field.  相似文献   

16.
We present the Ernst potential and the line element of an exact solution of Einstein’s vacuum field equations that contains as arbitrary parameters the total mass, the angular momentum, and the quadrupole moment of a rotating mass distribution. We show that in the limiting case of slowly rotating and slightly deformed configuration, there exists a coordinate transformation that relates the exact solution with the approximate Hartle solution. It is shown that this approximate solution can be smoothly matched with an interior perfect fluid solution with physically reasonable properties. This opens the possibility of considering the quadrupole moment as an additional physical degree of freedom that could be used to search for a realistic exact solution, representing both the interior and exterior gravitational field generated by a self-gravitating axisymmetric distribution of mass of perfect fluid in stationary rotation.  相似文献   

17.
The definitions and transformation properties of momentum and angular momentum of test bodies possessing both macroscopic rotation and net spin are discussed. The equations of motion for momentum and angular momentum of test bodies are derived and written in a covariant form when the energy-momentum tensor is symmetric.  相似文献   

18.
The concept and definitions of the energy–momentum and angular momentum of the gravitational field in the teleparallel equivalent of general relativity (TEGR) are reviewed. The importance of these definitions is justified by three major reasons. First, the TEGR is a well established and widely accepted formulation of the gravitational field, whose basic field strength is the torsion tensor of the Weitzenböck connection. Second, in the phase space of the TEGR there exists an algebra of the Poincaré group. Not only the definitions of the gravitational energy–momentum and 4-angular momentum satisfy this algebra, but also the first class constraints related to these definitions satisfy the algebra. And third, numerous applications of these definitions lead to physically consistent results. These definitions follow from a well established Hamiltonian formulation, and rely on the idea of localization of the gravitational energy. In this review, the concept of localizability of the gravitational energy is revisited, in light of results obtained in recent years. The behavior of free particles is studied in the space–time of plane fronted gravitational waves (pp-waves). Free particles are here understood as particles that are not subject to external forces other than the gravitational acceleration due to pp-waves. Since these particles acquire or loose kinetic energy locally, the transfer of energy from or to the gravitational field must also be localized. This theoretical result is considered an important and definite argument in favor of the localization of the gravitational energy–momentum, and by extension, of the gravitational 4-angular momentum.  相似文献   

19.
The influence of gravitational waves on the charged particles in a storage ring is studied. It shows that the gravitational waves might be directly detected by monitoring the motion of charged particles in a storage ring. The angular velocity of the charged particles is continually adjustable by changing the initial energy of particles and the strength of the magnetic field. This feature is very useful for finding the gravitational waves with different frequencies.  相似文献   

20.
In the background of Møller's theory, two energy-momentum complexest andP, are defined. From them, the losses of energy and angular momentum of a nongravitationally bound system due to the radiation of gravitational waves are evaluated. To solve the field equations some approximation procedures are used. The post-Newtonian limit is studied. When the modulus of the coupling constant of the theory is smaller than 103 and some reasonable conditions are assumed, the results here obtained appear to be identical to those of general relativity. The work performed here would be basic when dealing with some important questions in generalizing Møller's theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号