首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 331 毫秒
1.
Here, Pd Ru nanoparticle networks(NPNs) with various compositions were synthesized through an inexpensive method in water as a green solvent, at different ratios of the H_2PdCl_4 and RuCl_3 precursors. This is a fast, room temperature and surfactant free strategy which is able to form high surface area metal nanosponges with a three-dimensional(3D) porous structure. The structure of as-prepared nanosponges was characterized using the techniques of field emission scanning electron microscopy(FESEM), energy dispersive spectroscopy(EDS) and cyclic voltammetry(CV). Then, the electrocatalytic activities of Pd Ru NPNs towards formic acid oxidation were examined by electrochemical measurements including CV,chronoamperometry, and electrochemical impedance spectroscopy(EIS). Based on studies, it was found that the current density of formic acid oxidation(FAO) is strongly dependent on the composition of Pd Ru NPNs. The best performance was realized for Pd_4Ru_1 NPNs compared to monometallic Pd counterpart and other bimetallic NPNs which might be ascribed to the role of Ru in the decrease of CO adsorption strength on the catalyst and consequently the priority of formic acid oxidation through the direct pathway. The Pd_4Ru_1 NPNs also showed the maximum current density and stability in chronoamperometric measurements. In addition, comparative studies were performed between as-prepared NPNs and CNTs-supported Pd nanoparticles(Pd NPs/CNTs). The present results demonstrated the unique structural advantages of NPNs compared to individual Pd NPs supported on the CNT which leads to the promising performance of NPNs as supportless catalysts for the oxidation of formic acid.  相似文献   

2.
Pd and bimetallic PdRu nanoparticles supported on Vulcan XC-72 carbon prepared by the microwave-assisted polyol process are examined as electrocatalysts for the electrooxidation of formic acid. The catalysts are characterized by transmission electron microscopy and X-ray diffraction. The Pd and PdRu nanoparticles with sizes of <10 nm display the characteristic diffraction peaks of a Pd face-centered cubic (fcc) crystal structure. It is found that the addition of Ru to Pd/C can decrease the lattice parameter of Pd (fcc) crystal. The electrocatalytic activities of the catalysts are evaluated in sulfuric acid solution containing 1 M formic acid using linear sweeping voltammetry and chronoamperometry. The results show that Pd5Ru1/C displays the best electrocatalytic performance among all catalysts for formic acid electrooxidation.  相似文献   

3.
Highly monodisperse spherical 3 nm Pd–Cu alloy nanoparticles (NPs) were synthesized in high yield through the coreduction of [Pd(acac)2] (acac=acetylacetonate) and [Cu(acac)2] in nonhydrolytic solutions by using trioctylamine and oleic acid. The relative compositions of Pd and Cu could be tuned by controlling the molar ratios between the metal precursors in the raw solutions. The carbon‐supported Pd–Cu NPs (Pd–Cu/C) were chemically dealloyed by acetic acid washing, which resulted in the formation of porous structures. The prepared Pd–Cu/C catalysts exhibited at least threefold enhancement of Pd mass activities compared with a commercial Pd/C catalyst toward formic acid oxidation in an acidic medium, and also showed outstanding electrocatalytic stabilities. The improved electrocatalytic properties of the Pd–Cu NPs are attributed to the presence of a large number of active sites on their surfaces owing to their small particle sizes and chemically dealloyed porous structures.  相似文献   

4.
通过原位聚合法制备了以超支化聚合物的氮修饰的PdNx/C催化剂, 并考察了其催化甲酸电氧化反应的性能. 采用透射电子显微镜(TEM)、 X射线光电子能谱(XPS)和X射线衍射(XRD)等技术研究了氮的引入对催化活性组分Pd的形貌及表面电子形态的影响. 结果表明, 修饰氮后Pd纳米粒子粒径可稳定在2 nm, 并且保持了较高的分散度, 改善了表面Pd电子状态. 与Pd/C催化剂相比, 氮修饰的PdN20/C用于甲酸电氧化的Pd单位质量比活性提高了10.9%.  相似文献   

5.
Biocompatible hyperbranched polyglycidol (HBP) has been demonstrated to be an effective reducing and stabilizing agent for the synthesis of highly water-soluble monometallic (Au, Ag, Pt, Pd, and Ru) and bimetallic (Au/Pt, Au/Pd, and Au/Ru) nanoparticles (NPs), which provides a general and green protocol to fabricate metal NPs. The HBP-assisted reduction of metal ions follows an analogous polyol process. The reduction reaction rate increases sharply by increasing the temperature and the molecular weight of HBP. The size of NPs is controllable simply by changing the concentration of the metal precursor. High molecular weight HBP is favorable for the formation of NPs with uniform size and improved stability. By utilizing hydroxyl groups in the HBP-passivation layer of Au NPs, TiO(2)/Au, GeO(2)/Au, and SiO(2)/Au nanohybrids are also fabricated via sol-gel processes, which sets a typical example for the creation of versatile metal NPs/inorganic oxide hybrids based on the as-prepared multifunctional NPs.  相似文献   

6.
In this work, Pd-Cu alloy nanoparticles (NPs) with different atomic ratios are prepared on functionalized carbon nanotubes (CNTs) and applied as electrocatalysts for formic acid oxidation. The Cu-enriched Pd-Cu alloy NPs exhibit improved electrocatalytic activity and stability. Functionalized carbon supports are applied as substrates to tune the nanoscale morphologies of the obtained bimetallic phases under appropriate calcination and hydrogenation treatments. Spill-over effect aids a reduction of a high weight loading of Cu in its metallic phase, in turn, these Cu atoms integrate into Pd lattice and isolate Pd neighbouring atoms. Surface analyses show that a certain amount of the isolated Pd remains on the surfaces of Pd-Cu alloy NPs, which is responsible for the enhanced electrocatalytic performance.  相似文献   

7.
利用X射线能量色散(EDS)谱、X射线衍射(XRD)谱、透射电子显微镜(TEM)和电化学等技术研究了在电解液中添加乙二胺四甲叉膦酸(EDTMP)对甲酸在Pd/C催化剂上电氧化性能的影响. 结果表明, 当EDTMP添加的浓度为0.5 mmol/L时, Pd/C催化剂对甲酸氧化的电催化活性和稳定性最好. 这主要归结于吸附在Pd/C催化剂表面的EDTMP不但能通过基团效应降低CO的吸附量, 还能抑制Pd/C催化剂催化甲酸分解的速率, 从而减少了CO的毒化作用. 但当EDTMP的浓度大于0.5 mmol/L时, 吸附过多的EDTMP反而会占据Pd的活性位点, 降低催化作用.  相似文献   

8.
Palladium (Pd) nanoparticles are uniformly distributed on tungsten carbide (WC)-reduced graphene (RGO) oxide composite to synthesize a new electrocatalyst Pd-WC/RGO. The catalysts prepared with various amounts of tungsten carbide are characterized by transmission electron microscopy, energy dispersive spectrometry, and X-ray diffraction. The electrocatalytic performance of the prepared materials toward formic acid oxidation reaction is tested to evaluate the effect of adding WC. The results show that Pd-WC/RGO electrocatalyst with a 25 wt% WC (Pd-WC(25)/RGO) presented a narrow Pd particle size distribution both on the surface of RGO and WC nanocrystallites. Its current density of the positive main anodic peak of formic acid electrooxidation is up to 42.35 mA cm?2. Compared with the other catalysts, especially the Pd/RGO, the Pd-WC(25)/RGO demonstrate better electrocatalytic activity and higher stability toward the formic acid oxidation reaction. It is attributed to the small size and uniform dispersion of Pd NPs on both RGO sheets and WC nanocrystallines, and to the stronger synergistic effect between Pd NPs and WC nanocrystallines, which result from the proper mass percentage of 25 % WC in the Pd-WC(25)/RGO composite. The present work reveals that WC could be a good additive component, and the composite WC/RGO could be a better support in preparing Pd-based catalysts.  相似文献   

9.
《Journal of Energy Chemistry》2017,26(6):1238-1244
Rational synthesis of a new class of electrocatalysts with high-performance and low-cost is of great significance for future fuel cell devices. Herein, we demonstrate a general one-step simultaneous reduction method to prepare carbon-supported Pd M(M = Co, Fe, Ni) alloyed nanodendrites with the assistance of oleylamine and octadecylene. The morphology, structure and composition of the obtained Pd M nanodendrites/C catalysts have been fully characterized. The combination of the dendritic structural feature and alloyed synergy offer higher atomic utilization efficiency, excellent catalytic activity and enhanced stability for the formic acid oxidation reaction(FAOR). Strikingly, the as-synthesized Pd Co nanodendrites/C catalyst could afford a mass current density of 2467.7 A g~(-1), which is almost 3.53 and 10.4 times higher than those of lab-made Pd/C sample(698.3 A g~(-1)) and commercial Pd/C catalyst(237.6 A g~(-1)), respectively. Furthermore, the PdC o nanodendrites/C catalyst also exhibit superior stability relative to the Pd/C catalysts, make it a promising anodic electrocatalyst in practical fuel cells in the future. Additionally, the present feasible synthetic approach is anticipated to provide a versatile strategy toward the preparation of other metal alloy nanodendrites/carbon nanohybrids.  相似文献   

10.
We report the synthesis and characterization of new Ni(x)Ru(1-x) (x = 0.56-0.74) alloy nanoparticles (NPs) and their catalytic activity for hydrogen release in the ammonia borane hydrolysis process. The alloy NPs were obtained by wet-chemistry method using a rapid lithium triethylborohydride reduction of Ni(2+) and Ru(3+) precursors in oleylamine. The nature of each alloy sample was fully characterized by TEM, XRD, energy dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). We found that the as-prepared Ni-Ru alloy NPs exhibited exceptional catalytic activity for the ammonia borane hydrolysis reaction for hydrogen release. All Ni-Ru alloy NPs, and in particular the Ni(0.74)Ru(0.26) sample, outperform the activity of similar size monometallic Ni and Ru NPs, and even of Ni@Ru core-shell NPs. The hydrolysis activation energy for the Ni(0.74)Ru(0.26) alloy catalyst was measured to be approximately 37?kJ?mol(-1). This value is considerably lower than the values measured for monometallic Ni (≈70?kJ?mol(-1)) and Ru NPs (≈49?kJ?mol(-1)), and for Ni@Ru (≈44?kJ?mol(-1)), and is also lower than the values of most noble-metal-containing bimetallic NPs reported in the literature. Thus, a remarkable improvement of catalytic activity of Ru in the dehydrogenation of ammonia borane was obtained by alloying Ru with a Ni, which is a relatively cheap metal.  相似文献   

11.
硅钨酸修饰碳载Pd催化剂对甲酸氧化的电催化性能   总被引:2,自引:0,他引:2  
用络合还原法合成了用作直接甲酸燃料电池(DFAFC)中阳极碳载Pd(Pd/C)催化剂, 并研究了电解液中的硅钨酸(SiWA)对甲酸在Pd/C催化剂电极上氧化的促进作用. 结果表明, SiWA不但能提高Pd/C催化剂对甲酸氧化的电催化活性, 而且能增加电催化稳定性. 这种促进作用与SiWA浓度有关. 当SiWA浓度为0.40 g·L-1时, 促进作用最佳. 当SiWA浓度大于0.40 g·L-1时, 由于过多的SiWA吸附在Pd/C催化剂上而覆盖了部分Pd活性位点, 反而会降低促进作用. 另外, 由于SiWA在Pd/C催化剂上的吸附, 降低了CO的吸附量, 提高了Pd/C催化剂对甲酸氧化的电催化稳定性, 也促进了甲酸通过直接途径氧化.  相似文献   

12.
Bimetallic Au-Pd nanoparticles (NPs) were successfully immobilized in the metal-organic frameworks (MOFs) MIL-101 and ethylenediamine (ED)-grafted MIL-101 (ED-MIL-101) using a simple liquid impregnation method. The resulting composites, Au-Pd/MIL-101 and Au-Pd/ED-MIL-101, represent the first highly active MOF-immobilized metal catalysts for the complete conversion of formic acid to high-quality hydrogen at a convenient temperature for chemical hydrogen storage. Au-Pd NPs with strong bimetallic synergistic effects have a much higher catalytic activity and a higher tolerance with respect to CO poisoning than monometallic Au and Pd counterparts.  相似文献   

13.
A novel ternary nanocomposite, Pd nanoparticles(NPs)/polyoxometalates(POMs)/reduced graphene oxide(rGO), was prepared by a green, mild, electrochemical-reductionassisted assembly. It is worth noting that the Keggin-type POM acts as an electrocatalyst as well as a bridging molecule. During the reduction process, POMs transfer the electrons from the electrode to GO, leading to a deep reduction of GO and the content of oxygen-containing groups is decreased to around 6.1%. Meanwhile, the strong adsorption effect between the POM clusters and rGO nanosheets induces the spontaneous assembly of POM on r GO in a uniformly dispersed state, forming a nanocomposite. The ternary Pd NPs/POMs/rGO nanocomposite exhibits higher electrocatalytic activities, better electrochemical stability, and higher resistance to CO poisoning than the Pd/C catalyst towards the formic acid oxidation(FAOR). Especially, the Pd/PW_(12)/rGO exhibits the best electrocatalytic performance among three Pd/POMs/rGO composites(POMs = PW_(12), SiW_(12), PMo_(12)).  相似文献   

14.
Pd nanoparticles (NPs) were directly deposited on indium-tin oxide (ITO) electrodes by cyclic voltammetry (CV) in a bulk Pd2+ solution and the size of the Pd (NPs) was evaluated by SEM. The electrochemical deposition conditions of the Pd NPs were varied according to a scan rate. As the scan rate was decreased, the size of the Pd NPs increased, but the formic acid catalytic property was weakened. With regard to cycle number, with increased cycling, the size of the Pd NPs increased but the formic acid catalytic property decreased. As the conditions of electrochemical deposition were varied, the particle size and catalytic activity for formic acid were also changed.  相似文献   

15.
In order to study the decontamination nature of the reactive extraction of uranium in the presence of some metal chemicals using a single-phase mixture of HNO(3), H(2)O and tri-n-butylphosphate (TBP) in supercritical carbon dioxide (SC-CO(2)), we measured the decontamination factors (DFs) of Sr, Zr, Mo, Ru, Pd, Ce and Nd from their mixture with U. These elements were originally added to U(3)O(8) as SrO, ZrO(2), MoO(3), RuO(2), Pd, CeO(2) and Nd(2)O(3), and the extraction was performed at 18 MPa and 323 K with the single-phase mixture. The DFs for these elements were determined to be greater than 10(3) when the molecular ratio of U to TBP in the extracted complex was greater than 0.3. Dilution by SC-CO(2) effectively increased the DFs.  相似文献   

16.
Pd/TiC-C催化剂对甲酸氧化的电催化性能   总被引:1,自引:1,他引:0  
研究了TiC和C作混合载体的Pd(Pd/TiC-C)催化剂对甲酸氧化的电催化性能。发现Pd/TiC-C催化剂对直接甲酸燃料电池(DFAFC)中甲酸氧化的电催化性能要优于Pd/C催化剂。而且,Pd/TiC-C催化剂的电催化性能与C和TiC的质量比有关,当质量比为2时,Pd/TiC-C催化剂对甲酸氧化的电催化活性和稳定性最好,甲酸在C和TiC的质量比为2的Pd/TiC-C催化剂电极上的氧化峰峰电位为0.164 V,比在Pd/C催化剂电极上负移12 mV,峰电流密度为23.08 mA/cm2,比在Pd/C催化剂电极上高约42%。  相似文献   

17.
Recently, direct formic acid fuel cells (DFAFCs) which possess superior advantages such as a low operating temperature, light environmental pollution and high energy density, have been considered as one of the power generation technologies with a bright prospect. Herein, bimetallic PdAg nanoparticles (NPs) with different particle sizes were successfully produced via an easy one-pot solvothermal co-reduction synthetic route and their electrocatalytic performance for formic acid oxidation (FAO) were further investigated. In our strategy, the size of PdAg NPs can be easily controlled by only varying the concentration of precursors. The larger sized PdAg alloy (9.5 nm, noted as PdAg−L) was obtained at a low concentration of precursors, while the smaller PdAg alloy (3.7 nm, named as PdAg−S) was separated from the reaction system with higher solubility by centrifugation. The electrocatalytic activity and stability of the obtained PdAg NPs could be well optimized when incorporated with carbon (C), which is owing to a synergetic effect. The PdAg−S/C exhibits the highest mass activity with around 1.6 times that of PdAg−L/C and 2 times that of commercial Pd/C, which can be attributed to its larger ECSA and lower adsorption energy of the intermediate to facilitate the direct oxidation of HCOOH molecule.  相似文献   

18.
直接甲酸燃料电池(DFAFC)的两大问题是炭载Pd(Pd/C)催化剂对甲酸氧化的电催化稳定性不好和Pd催化剂能催化甲酸分解。发现用NH4F络合还原法制备的NH4F修饰Pd/C催化剂对甲酸氧化的电催化活性要比Pd/C催化剂好大约20%,电催化稳定性也要稍优于Pd/C催化剂。在120 s内和30℃下,甲酸在Pd/C催化剂上分解产生38 mL气体,但在NH4F修饰Pd/C催化剂上基本上不分解,因此NH4F修饰主要能抑制Pd催化剂催化分解甲酸的能力,而且又能在一定程度上提高Pd/C催化剂对甲酸氧化的电催化性能。  相似文献   

19.
郭琦  李焕芝  季云  陆天虹 《应用化学》2013,30(2):191-195
直接甲酸燃料电池的两大问题是Pd催化剂对甲酸氧化的电催化稳定性不好和Pd能催化甲酸分解。研究发现,当Pd/C在偏钒酸钠溶液中浸泡后能吸附上VO3-,吸附上VO3-的Pd/C催化剂对甲酸分解的催化性能会大大降低,由甲酸分解产生的CO的量也大大降低,使Pd/C催化剂被CO毒化的几率也大大降低,因此,在偏钒酸钠溶液中浸泡后的Pd/C催化剂对甲酸氧化的峰电流密度要比没有浸泡的Pd/C催化剂高13%左右。计时电流曲线的测量表明,6000 s时在偏钒酸钠溶液中浸泡后的Pd/C催化剂对甲酸氧化的峰电流密度要比没有浸泡的Pd/C催化剂高42%左右。结果证明,在偏钒酸钠溶液中浸泡能提高Pd/C催化剂对甲酸氧化的电催化活性,特别是电催化稳定性。  相似文献   

20.
通过一种结合了CO辅助合成Pt3Ni纳米立方粒子和单原子层Cu壳欠电位沉积再置换为Pd的方法,成功制备出了具有单原子层Pd壳和Pt3Ni纳米立方粒子核结构的Pt3Ni@Pd/C催化剂。电感耦合等离子体元素分析、X射线衍射和透射电子显微镜法被用于研究表征此种Pt3Ni@Pd/C催化剂,结果显示大部分Pt3Ni纳米粒子的表面都由{100}族的晶面所构成。而且在这些{100}族的晶面上,单原子层Pd壳通过电沉积的外延生长,也获得了{100}族的晶面。本文进一步对Pt3Ni@Pd/C作为甲酸氧化电催化剂的性能进行了研究,并与商业Pd/C和原Pt3Ni/C催化剂进行了比较。结果显示,由于Pt3Ni@Pd/C的单原子层Pd壳的结构和所暴露出的Pd{100}族的晶面,Pt3Ni@Pd/C催化剂具有优异的甲酸氧化电催化性能。与原Pt3Ni/C催化剂相比较,Pt3Ni@Pd/C催化剂的贵金属质量比活性提高到了7.5倍。此外,与商业Pd/C催化剂相比,Pt3Ni@Pd/C催化剂的比表面活性和Pd质量比活性也分别提高到了2.5和8.3倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号