首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
An appropriate coupled cohesive law for predicting the mixed mode failure is established by combining normal separation and tangential separation of surfaces in the cohesive zone model(CZM) and the cohesive element method.The Xu-Needleman exponential cohesive law with the fully shear failure mechanism is one of the most popular models.Based on the proposed consistently coupled rule/principle,the Xu-Needleman law with the fully shear failure mechanism is proved to be a non-consistently coupled cohesive la...  相似文献   

2.
In the paper, two theoretical poroelastic osteon models are presented to compare their poroelastic behaviors, one is the hollow osteon model (Haversian fluid is neglected) and the other is the osteon model with Haversian fluid considered. They both have the same two types of impermeable exterior boundary conditions, one is elastic restraint and the other is displacement constrained, which can be used for analyzing other experiments performed on similarly shaped poroelastic specimens. The obtained analytical pressure and velocity solutions demonstrate the effects of the loading factors and the material parameters, which may have a significant stimulus to the mechanotransduction of bone remodeling signals. Model comparisons indicate: (1) The Haversian fluid can enhance the whole osteonal fluid pressure and velocity fields. (2) In the hollow model, the key loading factor governing the poroelastic behavior of the osteon is strain rate, while in the model with Haversian fluid considered, the strain rate governs only the velocity. (3) The pressure amplitude is proportional to the loading frequency in the hollow model, while in the model with Haversian fluid considered, the loading frequency has little effect on the pressure amplitude.  相似文献   

3.
骨组织受力变形后其内部液体就会流动,同时在其微观结构——骨单元壁中扩散,并进一步产生一系列与骨液流动相关的物理效应,如流体剪切应力、流动电位等,这些物理效应被细胞感知并做出破骨或成骨等反应,来使骨适应外部载荷环境.鉴于骨组织产生的内部液体流动很难实验测定,理论模拟是目前的主要研究手段.基于骨单元的多孔弹性性质建立了骨小管内部液体的流动模型,该模型将骨单元所受的外部载荷与骨小管内部液体的压力、流速、流量和切应力联系起来,并进一步可以研究其力传导与力电传导机制.骨小管模型的建立分别基于中空和考虑哈弗液体的骨单元模型,并考虑了骨单元外壁的弹性约束和刚性位移约束两种边界条件.最终得到骨单元在外部轴向载荷作用下,骨小管内部液体的流量及流体切应力的解析解.结果表明:骨小管中的液体流量与流体切应力都正比于应变载荷幅值和频率,并由载荷的应变率决定.因此应变率可以作为控制流量和流体切应力的一种生理载荷因素.流量随着骨小管半径的增大而非线性增大,而流体切应力则随着骨小管半径的增大而线性增大.此外,在相同的载荷下,含哈弗液体的骨单元的模型中,骨小管中液体的流量和切应力均大于中空骨单元模型.  相似文献   

4.
On the dead load boundary value problem   总被引:1,自引:0,他引:1  
  相似文献   

5.
在柱壳的有限元计算中,采用Mindlin八结点杂交壳单元和增量荷载法,基于选择积分,缩减积分及完全积分三种积分模式编制了分层计算各种厚度板壳的有限元程序FEAM,并对中厚圆柱壳在局部法向均布荷载作用下的弹塑性有限变形和屈曲问题进行了分析和计算,算例表明,利用FEAM可对壳体屈曲的临界荷载及屈曲后结构的承载与形状改变作定性与定量的分析.  相似文献   

6.
混凝土结构在受到动载荷作用之前,通常已承受着初始静载荷的作用.大量关于混凝土应变率效应的研究均没有考虑初始静载荷对动强度的影响,会导致过高地估计混凝土的动强度,使混凝土结构设计偏于危险.本文通过分析混凝土材料在静动组合载荷下的率效应机理,给出了初始静载荷的定义.在此基础上,推导了混凝土材料参数与初始静载荷和应变率的表达式,提出了建立静动组合强度准则的一般方法.通过材料参数反映初始静载荷与应变率的联合影响,给出了由初始有效静载荷、动态黏聚强度和摩擦强度共同组成的混凝土动态强度,将广义非线性强度准则发展为静动组合多轴强度准则.建立的强度面在相同初始静载荷下随应变率的增大向外扩张,在相同应变率下随初始静载荷的增大向里收缩,即混凝土的强度在相同初始静载荷下随应变率的增大而增大,在相同应变率下随初始静载荷的增大而减小.此外,当初始静载荷和应变率不变时,加载路径对混凝土材料的应变率效应无影响,但会影响混凝土材料的静水压力效应,即当初始静载荷和应变率固定不变时,静动组合强度面的位置和大小即可确定,不同加载路径下强度的不同是由于静水压力效应导致的.最后利用多组混凝土材料静动组合强度试验对建立的静动组合强度准则进行了验证.  相似文献   

7.
谢中秋  张蓬蓬 《实验力学》2013,28(2):220-226
利用INSTRON万能试验机和分离式Hopkinson压杆(SHPB)对PMMA试件在较宽应变率范围内进行了单轴压缩实验,研究加载应变率对PMMA材料力学性能的影响.利用扫描电子显微镜对回收的试样进行了显微观察,重点分析不同加载应变率下PMMA的微观损伤破坏模式.结果表明:随着应变率的增大,PMMA的流动应力显著地增加,且冲击加载条件下,峰值应力的应变率敏感性明显高于准静态;在准静态加载条件下,PMMA试样呈现明显的延性破坏特征,在动态加载条件下则表现为脆性破坏.最后,对PMMA材料的ZWT粘弹性本构模型参数进行了拟合,拟合结果与实验结果吻合较好,表明该本构模型能够较好地描述较宽应变率范围内PMMA材料的应力应变关系.  相似文献   

8.
Stresses caused by oscillations of shell structures may vary significantly even for the same oscillation form. Therefore, during fatigue tests it is very important to solve the loading problem for these structures and further evaluate their fatigue strength statistical parameters. A new method for solution of these difficult problems is proposed in this paper. The basic idea is to take into account relative load values of fatigue tests instead of often used absolute load values. The fatigue loads are reproduced on a test bed by the same means by which the dynamic loads were determined. Levels of fatigue loads used in the tests are based on the individual dynamic loads for each of the structures investigated. The basic principles are described for axial fans used in railway transport. Axial fan blades are a characteristic example of shell structures.  相似文献   

9.
Fracture toughness of heat-resistant steel can be increased by a preliminary thermomechanical loading called warm pre-stressing (WPS). The procedure creates a plastic deformed area around the crack tip and hence allows larger service loads to be tolerated by the cracked specimen. It is shown that a hydrogenation in the preloading stage decreases the fracture toughness of material.Investigations are also presented of the applicability of physical and mechanical approaches for the prediction of cleavage stress of materials after preliminary plastic deformation (PPD) effects and hydrogenation. Different schemes of the plastic deformation and influence of hydrogenation are considered in the preloading stage to provide different levels cleavage stress of steel 15Kh2MFA.  相似文献   

10.
In this paper large deflection and rotation of a nonlinear Bernoulli-Euler beam with variable flexural rigidity and subjected to a static co-planar follower loading is studied. It is assumed that the angle of inclination of the force with respect to the deformed axis of the beam remains unchanged during deformation. The governing equation of this problem is solved analytically for the first time using a new kind of analytical technique for nonlinear problems, namely the Homotopy Analysis Method (HAM). The present solution can be used for the analysis of a wide range of loads, material/cross section properties and lengths for beams undergoing large deformations. The results obtained from HAM are compared with results reported in previous works. Finally, the load–displacement characteristics of a uniform cantilever beam with different material properties under a follower force applied normal to the deformed beam axis are presented.  相似文献   

11.
The mechanical response of microelectromechanical systems (MEMS) under impulse loading conditions has not been thoroughly studied to date, partially because of the lack of means to provide such extreme loading rates to miniature devices. However, the increasing use of MEMS-based sensors and actuators in adverse environments, which include extreme strain rate loading, has motivated the investigation of the response of MEMS components under these conditions. In this work, basic and mostly commonly employed Au MEMS components were subjected to impulse loads of 40 ns in duration, which were generated by a high power pulsed laser in order to achieve acceleration levels on the order of 109g. This allowed for the microdevice mechanical/structural response to be investigated at time scales that were of the order of wave transit times in the substrate and the devices. Basic microscale structures, such as cantilevers and fixed-fixed beams of uniform cross-section, were employed to facilitate comparisons with companion finite element simulations in order to gain insight into the mechanisms responsible for impulsive deformation at the microscale. The simulations investigated the effect of loading rate, boundary conditions, beam length, material constitutive response, and damping on the final deformed shapes of the beams. It was found that contact and momentum transfer mechanisms were responsible for the large permanent beam deflections which were measured postmortem. Additionally, the effects of both damping and material property rate dependence were found to be dominant in determining the final deformed shape of the beams. In fact, our observations suggest that the contributions of material rate dependence and damping are not simply additive, but rather involve a coupling between them that affects the final structure response.  相似文献   

12.
李益萱  张治君  邵闯 《实验力学》2014,29(4):499-505
飞机结构在飞行过程中同时承受气动载荷和振动载荷的联合作用,这两种载荷的耦合加载试验对于飞机结构成为一项重要的研究内容,所以有必要对此类试验的可行性及其耦合加载方式进行研究。此次试验以气囊加载静载/常规疲劳载荷状态下试件的振动响应测试为目的,设计符合试验要求的试件和整套试验装置。得到了气囊5种不同加载情况下试件振动响应变化情况,并对此试验结果进行了理论分析,得出以下结论:a)气囊模拟静载/常规疲劳载荷加载不会大幅改变结构本身振动特性,此耦合试验方法所模拟环境比较接近飞机结构真实载荷环境;b)加载气囊的个数、部位及加载力的不同对试件结构的振动响应有一定影响,应增加气囊蓄能器或在试验前进行分析以选择合理的加载点。  相似文献   

13.
Summary  The problem of the extension of subinterface microcracks in an infinite metal/ceramic bimaterial solid is studied. For the microcrack growth, the values of the M-integral are calculated under the assumption of a self-similar growth. First, the role that the M-integral plays in a metal/ceramic bimaterial solid with growing subinterface cracks is analyzed. It is concluded that an inherent relation exists between the value of the M-integral and the decrease of the effective elastic moduli for a bimaterial solid with growing subinterface microcracks. Second, it is concluded that mutual amplification and shielding effects exist during the microcrack extension, while they are substantially dependent on the increment of the microcrack length as well as the geometry of the microcrack arrangement under given loads. This strong mutual shielding effect of interacting microcracks makes the microcrack extension become increasingly difficult, and may stop the growth of the microcracks even under constant loads. Also, it is concluded that for a certain microcrack growth, the value of the M-integral in metal/ceramic bimaterial solid is always larger than that in homogeneous brittle solid for the same crack configuration. This means that the same microcrack growth in the former case shows lower stability than that in the latter one, due to the existence of a ductile phase. Received 3 May 2001; accepted for publication 27 June 2002 This work was supported by the Chinese National Nature Science Foundation (Grant 19472053) and supported by the Doctorate Foundation of Xi'an Jiaotong University (Grant DFXJU2000-15).  相似文献   

14.
15.
徐莲云  侯振德  钟声  王泓 《实验力学》2009,24(4):320-326
骨受力变形时所引起的压力驱动骨内哈佛氏管或骨小管内的液体流动,是骨内出现流动电位的外部原因.由于人体经常受动态载荷作用,研究骨在动态加载过程中流动电位的变化,更有助于了解骨细胞周围电环境的性质.为此,设计了流动电位测试系统,在骨试样两端施加梯形压力波.实验测量了在不同加载速率下流动电位的变化波形.结果显示,加载速率越高,流动电位有减小的趋势.分析认为这是由于微管中局部产生的湍流引起的.  相似文献   

16.
针对饱和土中异形隧道的三维动力响应问题,建立了2.5维有限元与边界元耦合模型.将隧道结构视为弹性体,采用2.5维有限元建立隧道模型;将地基土视为饱和多孔介质,采用2.5维边界元建立饱和土体模型.借助组合辅助问题基本解消除了边界积分方程的奇异性.利用饱和土与隧道接触面的位移、面力连续和完全透水或完全不透水边界条件,实现2.5维有限元和边界元模型的耦合求解.模型具有计算效率高、适用范围广的优点.通过与完全透水和完全不透水边界条件下轴对称问题的半解析解以及单相介质的2.5维有限元与边界元耦合模型对比,验证了本文模型的正确性.最后利用该模型计算了饱和土体中类矩形隧道在移动载荷作用下的三维动力响应,分析了不同土体渗透性下位移及孔隙水压力沿隧道轴向、环向和深度的分布规律.结果表明:(1)孔隙水压力随土体渗透性增大而显著减小,位移受土体渗透性影响小;(2)位移及孔隙水压力在隧道环向主要分布在距载荷作用点两侧约2 m的范围内;(3)孔隙水压力沿深度的衰减比土体位移快,且孔隙水压力和轴向位移沿深度的分布受土体渗透性影响大.  相似文献   

17.
粉末烧结钨合金材料的绝热剪切研究   总被引:1,自引:0,他引:1  
在分离式霍普金森压杆装置上对斜圆柱粉末烧结钨合金试件进行了冲击实验,由于斜圆柱结构中剪切分量在冲击压缩中的持续作用,实验中观察到了宏观破断现象。利用光学显微镜和扫描电子显微镜分别对试件断面和试件的纵截面进行了分析,观察到了贯通钨颗粒的绝热剪切带这一变形局部化现象。对粉末烧结钨合金绝热剪切破坏机制进行了分析。  相似文献   

18.
混凝土黏聚开裂模型若干进展   总被引:3,自引:0,他引:3  
黏聚模型是用来描述混凝土断裂行为的基本模型, 首先介绍了混凝土的黏聚开裂模型的基本概念,总结了确定黏聚区的本构方程的各种方法,即直接单轴拉伸测试、J积分方法、R曲线法、柔度法和逆推法.然后介绍了黏聚模型在I型和复合型裂纹问题、疲劳断裂问题中的应用以及黏聚模型与混凝土尺寸效应的关系.最后对黏聚开裂模型与桥联模型、带状裂缝模型进行了比较和总结, 指出了该模型存在的问题, 并对其以后的发展方向提出了建议.   相似文献   

19.
There have been many studies of the stability of plastically deformable media. Specific problems are solved in [1, 2], etc. In these studies it has been assumed that the process of loss of stability can be investigated in the quasi-static formulation, i.e., an attempt is made to find the values of the external loads at which, together with the unperturbed equilibrium mode, the adjacent perturbed equilibrium state is possible, the transition from the unperturbed to the adjacent perturbed state being assumed to take place without unloading.The results thus obtained are in agreement with general experimental concepts.Below it is shown that the use of the model of a viscoelastic-plastic hardening body leads to a process of stability loss in which the material is plastically deformed, which justifies the use of the tangent-modulus formulation.It is established that if the external loads are conservative, then for viscoelastic-plastic bodies loss of stability will occur in the static instability mode.The stability of systems under creep conditions was previously examined in [3–8].  相似文献   

20.
Finite element analyses of brick masonry subjected to in-plane concentrated static and dynamic loads are carried out to study crack initiation and propagation during the failure process of unreinforced masonry walls. The numerical model is firstly validated by the experimental tests by using the same materials parameters and loading conditions. Then, the static and dynamic concentrated loads are applied to the mortar joints and brick, respectively, and numerical simulations are used to compare the fracture characteristics for these loads. In addition, a comparison of fracture mechanisms for the concentrated loads on the mortar joint and brick is also given. Finally, the effect of dynamic pressure (Pmax) on the failure mechanism of brick masonry is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号