首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
非定常非完整力学系统的稳定性研究是重要而又困难的问题,直接从微分方程出发来构造李雅普诺夫函数往往很难实现.本文给出了一种间接方法.提出了10类广义梯度系统的定义,并分别给出了10类广义梯度系统的微分方程.进一步研究一般切塔耶夫型非完整系统的广义梯度表示,给出该系统分别成为这10类广义梯度系统的条件,从而将切塔耶夫型非完整系统化成各类广义梯度系统.最后利用广义梯度系统的性质来研究切塔耶夫型非完整系统零解的稳定性.这种方法在直接构造李雅普诺夫函数发生困难时,显得更为有效.举例说明结果的应用.  相似文献   

2.
The paper proposes computer algebra system (CAS) algorithms for computer-assisted derivation of the equations of motion for systems of rigid bodies with holonomic and nonholonomic constraints that are linear with respect to the generalized velocities. The main advantages of using the D’Alembert-Lagrange principle for the CSA-based derivation of the equations of motion for nonholonomic systems of rigid bodies are demonstrated. Among them are universality, algorithmizability, computational efficiency, and simplicity of deriving equations for holonomic and nonholonomic systems in terms of generalized coordinates or pseudo-velocities __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 9, pp. 106–115, September 2006.  相似文献   

3.
The development of a form of Lagrange's equations applicable with nonholonomic systems with non-linear constraint equations is presented and discussed. The analysis is based upon, and is an extension of. a method developed by the authors for nonholonomic systems with linear constraint equations in the generalized coordinate derivatives. The method is illustrated with the problem of the “balancing pole”.  相似文献   

4.
The algebraic structure and the Poisson method for a weakly nonholonomic system are studied. The differential equations of motion of the system can be written in a contravariant algebra form and its algebraic structure is discussed. The Poisson theory for the systems which possess Lie algebra structure is generalized to the weakly nonholonomic system. An example is given to illustrate the application of the result.  相似文献   

5.
Lyapunov's first method, extended by V. V. Kozlov to nonlinear mechani- cal systems, is applied to the study of the instability of the position of equilibrium of a mechanical system moving in the field of conservative and dissipative forces. The mo- tion of the system is limited by ideal nonlinear nonholonomic constraints. Five cases determined by the relationship between the degree of the first nontrivial polynomials in Maclaurin's series for the potential energy and the functions that can be generated from the equations of nonlinear nonholonomic constraints are analyzed. In the three eases, the theorem on the instability of the position of equilibrium of nonholonomic systems with linear homogeneous constraints (V. V. Kozlov (1986)) is generalized to the case of nonlin- ear nonhomogeneous constraints. In the other two cases, new theorems are set extending the result from V. V. Kozlov (1994) to nonholonomic systems with nonlinear constraints.  相似文献   

6.
《力学快报》2021,11(5):100286
We focus on Mei symmetry for time scales nonshifted mechanical systems within Lagrangian framework and its resulting new conserved quantities. Firstly, the dynamic equations of time scales nonshifted holonomic systems and time scales nonshifted nonholonomic systems are derived from the generalized Hamilton’s principle. Secondly, the definitions of Mei symmetry on time scales are given and its criterions are deduced. Finally, Mei’s symmetry theorems for time scales nonshifted holonomic conservative systems, time scales nonshifted holonomic nonconservative systems and time scales nonshifted nonholonomic systems are established and proved, and new conserved quantities of above systems are obtained. Results are illustrated with two examples.  相似文献   

7.
I.IntroductionTheinverseproblemofdynamicsisoneoftheimportantsubjectsinmechanics.In1977,Szebehelysetforthaninverseproblemforthedeterminationofthet'orcefunctiontoamaterialpointintheplanefromparametricfamilyoftrajectories,andobtainedalinearfirstorderpartialdifferentialequationfortheforcefunction.Later,Erdil'l,MellsandPirast=l,MellsandBorgherol'l,BoilsandMertnsl4]extendedSzebehely'sproblemtoboththreeandndimensionalholonomicsystem.Recently,theauthorandProfessorMetFengxiangl'1studiedtheSzebehe…  相似文献   

8.
In1979,R.BengtssonandS.Frauendorfaccuratlymeasuredthemaximumvaluesofthespinvelocityof14kindsofnucleons,andresultsshowedthemaximumvalueofthespinvelocityofeachnucleonwasdifferenttoanothers[1].Withthedevelopmentofscienceandtechnology,moreandmoreexperime…  相似文献   

9.
In this paper,the Kane’s equations for the Routh’s form of variable massnonholonomic systems are established.and the Kane’s equations for percussion motionof variable mass holonomic and nonholonomic systems are deduced from them. Secondly,the equivalence to Lagrange’s equations for percussion motion and Kane’sequations is obtained,and the application of the new equation is illustrated by anexample.  相似文献   

10.
非完整非保守动力学系统的守恒律   总被引:31,自引:0,他引:31  
刘端 《力学学报》1989,21(1):75-83
  相似文献   

11.
This paper deals with the forward and the inverse dynamic problems of mechanical systems subjected to nonholonomic constraints. The intrinsically dual nature of these two problems is identified and utilised to develop a systematic approach to formulate and solve them according to an unified framework. The proposed methodology is based on the fundamental equations of constrained motion which derive from Gauss’s principle of least constraint. The main advantage arising from using the fundamental equations of constrained motion is that they represent an effective method capable to derive the generalised acceleration of a mechanical system, constrained in general by a set of nonholonomic constraints, together with the generalized constraint forces (forward dynamics). When the constraint equations are used to represent the desired behaviour of the mechanical system under study, the generalised constraint forces deriving from the fundamental equations of constrained motion provide the control actions which reproduce the specified motion for the system (inverse dynamics). This approach is systematically extended to underactuated mechanical systems introducing a new method named underactuation equivalence principle. The underactuation equivalence principle is founded on the key idea that the underactuation property of a mechanical system can be mathematically represented using a particular set of nonholonomic constraint equations. Two simple case-studies are reported to exemplify the proposed methodology. In the first case-study the computation of the generalised constraint forces relative to the revolute joint constraints of a physical pendulum is illustrated. In the second case-study the calculation of the control action which solves the swing-up problem for an inverted pendulum is described.  相似文献   

12.
In this paper conservation laws of nonholonomic nonconservative dynamical systems are studied by using the differential variational principles of Jourdain and the generalized Noether's identities of nonconservative systems subject to first order nonlinear nonholonomic constraints are provided. The project is supported by the National Natural Science Foundation of China.  相似文献   

13.
Optimizing the dynamic response of mechanical systems is often a necessary step during the early stages of product development cycle. This is a complex problem that requires to carry out the sensitivity analysis of the system dynamics equations if gradient-based optimization tools are used. These dynamics equations are often expressed as a highly nonlinear system of ordinary differential equations or differential-algebraic equations, if a dependent set of generalized coordinates with its corresponding kinematic constraints is used to describe the motion. Two main techniques are currently available to perform the sensitivity analysis of a multibody system, namely the direct differentiation and the adjoint variable methods. In this paper, we derive the equations that correspond to the direct sensitivity analysis of the index-3 augmented Lagrangian formulation with velocity and acceleration projections. Mechanical systems with both holonomic and nonholonomic constraints are considered. The evaluation of the system sensitivities requires the solution of a tangent linear model that corresponds to the Newton–Raphson iterative solution of the dynamics at configuration level, plus two additional nonlinear systems of equations for the velocity and acceleration projections. The method was validated in the sensitivity analysis of a set of examples, including a five-bar linkage with spring elements, which had been used in the literature as benchmark problem for similar multibody dynamics formulations, a point-mass system subjected to nonholonomic constraints, and a full-scale vehicle model.  相似文献   

14.
This paper presents one type of integrals and its condition of existence for theequations Of motion of higher-order nonholonomic systems,including I-order integral(generalized energy integral),2-order integral and p-order integral(P>2).All of theseintegrals can be constructed by the Lagrangianfunction of the system.Two examples aregiven to illustrate the application of the suggested method.  相似文献   

15.
In this paper,Routh’s equations for the mechanical systems of the variable masswith nonlinear nonholonomic constraints of arbitrary orders in a noninertial referencesystem have been deduced not from any variational principles,but from the dynamicalequations of Newtonian mechanics.And then again the other forms of equations fornonholonomic systems of variable mass are obtained from Routh’s equations.  相似文献   

16.
非完整约束系统几何动力学研究进展:Lagrange理论及其它   总被引:1,自引:1,他引:0  
近10年来, 非完整力学的发展主要集中在两个相互关联的方向上, 一个是非完整运动规划, 另一个则是非完整约束系统的几何动力学, 这两个研究方向都充分地利用了现代几何学, 如纤维丛理论、辛流形和Poisson流形结构等等.本文主要综述非完整约束系统几何动力学的外附型和内禀型Lagrange理论, 包括非定常力学系统所需要的射丛几何学的基本概念、射丛按约束的直和分解、约束流形上的水平分布、D'Alembert-Lagrange方程与Chaplygin方程的整体描述、以及Riemann-Cartan流形上的非完整力学, 文中对Chetaev条件和d-δ交换关系的几何意义作了深入讨论.除此之外, 简要评述非完整力学的Hamilton理论与赝Poisson结构、Noether对称性和Lie对称性、动量映射与对称约化、Vakonomic动力学等几个非常重要专题的研究进展.   相似文献   

17.
18.
非Четаев型非完整系统的Lie对称性与守恒量   总被引:29,自引:0,他引:29  
研究非Четаев型非完整系统的Lie对称性.首先利用微分方程在无限小变换下的不变性建立Lie对称所满足的确定方程和限制方程,给出结构方程并求出守恒量;其次研究上述问题的逆问题:根据已知积分求相应的Lie对称性;最后举例说明结果的应用.  相似文献   

19.
In this paper we present a new variational principle, from which Gauss principle can be derived as a corollary. By using the new principle, Appell's and Tzènoff's equations are extended to nonholonomic systems of any order. As an example, a second order nonholonomic system is given to illustrate the application of the equations obtained.  相似文献   

20.
This paper presents the generalized principles of least action of variable massnonholonomic nonconservative system in noninertial reference frame, proves theequivalence between Holder form and Suslov form, and then obtains differential equationsof motion of variable mass nonholonomic nonconservative system in noninertial referenceframe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号