首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This work is the continuation of the discussion of Refs.[1-5].In this paper:[A] The Love-Kirchhoff equations of vibration problem with small deflection fororthorhombic anisotropic thin shells or orthorhombic anisotropic thin plates on Winkler’sbase are classified as several of the same solutions of Schr?dinger equation.and we canobtain the general solutions for the two above-mentioned problems by the method in Refs.[1]and[3-5].[B]The von Kármán-Vlasov equations of large deflection problem for shallow shellswith orthorhombic anisotropy(their special cases are the von Kármán equations of largedeflection problem for thin plates with orthorhombic anisotropy)are classified as thesolutions of AKNS equation or Dirac equation,and we can obtain the exact solutions forthe two abovementioned problems by the inverse scattering method in Refs.[4-5].The general solution of small deflection problem or the exact solution of largedeflection problem for the corrugated or rib-reinforced plates and shells as special c  相似文献   

2.
This work is the continuation of the discussions of[50]and[51].In this paper:(A)The Love-Kirchhoff equation of small deflection problem for elastic thin shellwith constant curvature are classified as the same several solutions of Schr(?)dingerequation,and we show clearly that its form in axisymmetric problem;(B)For example for the small deflection problem,we extract the general solution ofthe vibration problem of thin spherical shell with equal thickness by the force in centralsurface and axisymmetric external field,that this is distinct from ref.[50]in variable.Today the variable is a space-place,and is not time;(C)The von Kármán-Vlasov equation of large deflection problem for shallow shellare classified as the solutions of AKNS equations and in it the one-dimensional problem isclassified as the solution of simple Schr(?)dinger equation for eigenvalues problem,and wetransform the large deflection of shallow shell from nonlinear problem into soluble linearproblem.  相似文献   

3.
This work is the continuation and improvement of the discussion of Ref.[1]. We alsoimprove the discussion of Refs.[2-3] on the elastic large deflection problem by results ofthis paper.We again simplify the von Kármán equation for elastic large deflection problem,and finally turn it into the nonlinear Schr(?)dinger equation in this paper.Secondly,weexpand the AKNS equation to still more symmetrical degree under many dimensionalconditions in this paper.Owing to connection between the nonlinear Schr(?)dinger equationand the integrability condition for the AKNS equation or the Dirac equation,we can obtainthe exact solution for elastic large deflection problem by inverse scattering method.In otherwords,the elastic large deflection problem wholly becomes a quantum eigenvalues problem.The large deflection problem with orthorhombic anisotropy is also deduced in thispaper.  相似文献   

4.
In this paper the solutions of von Karman for elastic large deflection problem areclassified as the several solutions of Schr(?)dinger equation for quantum eigenvaluesproblem,and we present the transfrom for elastic large deflection problem from non-linearequation into linear equation.Thus,we create favourable conditions of the adoption ofconverse scattering methnd and B(?)cklund transformation.We also discuss the largedeflection problem of long and narrow plate.We can study the non-linear transition of elastic thin plate by furnished method fromthis paper.  相似文献   

5.
It is extremely difficult to obtain an exact solution of von Karman’s equations because the equations are nonlinear and coupled. So far many approximate methods have been used to solve the large deflection problems except that only a few exact solutions have been investigated but no strict proof on convergence is presented yet. In this paper, first of all, we reduce the von KÁrmÁn’s equations to equivalent integral equations which are nonlinear, coupled and singular. Secondly the sequences of continuous function with general form are constructed using iterative technique. Based on the sequences to be uniformly convergent, we obtain analytical formula of exact solutions to von Karman’s equations related to large deflection problems of circular plate and shallow spherical shell with clamped boundary subjected to a concentrated load at the centre.  相似文献   

6.
In this paper, von Karman’s set of nonlinear equation for large deflection of rectangular plates is at first converted into several sets of linear equations by taking central dimensionless deflection as perturbation parameter, and then, the sets of linear equations for plates with various ratio λ of length to width are solved with application of variational method. The analytical expressions for displacements and stresses as well as formulas for numerical calculation are worked out. The figures of maximum deflection-load end maximum stress with ratio H of length to width as a parameter are given in this paper. Through comparison, it is found that the results of this paper are quite in accord with experiments.  相似文献   

7.
In this paper the least square method of determination of the perturbation parameteris presented when the perturbation technique is used in the solution of large deflection ofaxisymmetrical plates and shallow shells.The examples of circular plates are calculatedand compared with the exact solution and other perturbation solutions. The results show thebest agreement with the exact solution among those perturbation solutions.  相似文献   

8.
This article presents closed-form solutions for the frequency analysis of rectangular functionally graded material(FGM) thin plates subjected to initially in-plane loads and with an elastic foundation. Based on classical thin plate theory, the governing differential equations are derived using Hamilton's principle. A neutral surface is used to eliminate stretching–bending coupling in FGM plates on the basis of the assumption of constant Poisson's ratio. The resulting governing equation of FGM thin plates has the same form as homogeneous thin plates. The separation-ofvariables method is adopted to obtain solutions for the free vibration problems of rectangular FGM thin plates with separable boundary conditions, including, for example, clamped plates. The obtained normal modes and frequencies are in elegant closed forms, and present formulations and solutions are validated by comparing present results with those in the literature and finite element method results obtained by the authors. A parameter study reveals the effects of the power law index n and aspect ratio a/b on frequencies.  相似文献   

9.
To begin with, in this paper, the displacement governing equations and the boundary conditions of nonsymmetrical large deflection problem of circular thin plates are derived. By using the transformation and the perturbation method, the nonlinear displacement equations are linearized, and the approximate boundary value problems are obtained. As an example, the nonlinear bending problem of circular thin plates subjected to comparatively complex loads is studied.  相似文献   

10.
In this paper,von Kármàn’s set of nonlinear equation for large deflection ofrectangular plates is at first converted into several sets of linear equations by taking centraldimensionless deflection as perturbation parameter,and then,the sets of linear equationsfor plates with various ratios of length to width are solved with application of variationalmethod.The analytical expressions for displacements and stresses as well as formulas fornumerical calculation are worked out.The figures of maximum deflection-load andmaximum stress with ratio λ of length to width as a parameter are given in this paper.Through comparison,it is found that the results of this paper are quite in accord withexperiments.  相似文献   

11.
The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-form natural mode satisfies the governing equation of the eigenvalue problem of thin plate exactly and is applicable for any types of boundary conditions. With all combinations of simplysupported (S) and clamped (C) boundary conditions applied to the natural mode, the mode shapes are obtained uniquely and two eigenvalue equations are derived with respect to two spatial coordinates, with the aid of which the normal modes and frequencies are solved exactly. It was believed that the exact eigensolutions for cases SSCC, SCCC and CCCC were unable to be obtained, however, they are successfully found in this paper. Comparisons between the present results and the FEM results validate the present exact solutions, which can thus be taken as the benchmark for verifying different approximate approaches.  相似文献   

12.
It is extremely difficult to obtain an exact solution of von Kármán’s equationsbecause the equations are nonlinear and coupled.So far many approximate methods havebeen used to solve the large deflection problems except that only a few exact solutions havebeen investigated but no strict proof on convergence is presented yet.In this paper,first ofall,we reduce the von Kármán’s equations to equivalent integral equations which arenonlinear,coupled and singular.Secondly the sequences of continuous function withgeneral form are constructed using iterative technique.Based on the sequences to beuniformly convergent,we obtain analytical formula of exact solutions to von Kármán’sequations related to large deflection problems of circular plate and shallow spherical shellwith clamped boundary subjected to a concentrated load at the centre.  相似文献   

13.
Analytic nonlinear three-dimension solutions are presented for axially symmetrical homogeneous isotropic circular plates and multilayered plates with rigidly clamped boundary conditions and under transverse load.The geometric nonlinearily from a moderately large deflection is considered.A developmental perturbation method is used to solve the complicated nonlinear three-dimension differential equations of equilibrium.The basic idea of this perturbation method is using the two-dimension solutions as a basic form of the corresponding three-dimension solutions,and then processing the perturbation procedure to obtain the three-dimension perturbation solutions.The nonlinear three-dimension results in analytic expressions and in numerical forms for ordinary plates and multilayered plates are presented.All of the plate stresses are shown in figures.The results show that this perturbation method used to analyse nonlinear three-dimension problems of plates is effective.  相似文献   

14.
A wavelet method for solving strongly nonlinear boundary value problems is described, which has been demonstrated early to have a convergence rate of order 4, almost independent of the nonlinear intensity of the equations. By using such a method, we study the bending problem of a circular plate with arbitrary large deflection. As the deflection increases,the bending behavior usually exhibits a so-called plate-to-membrane transition. Capturing such a transition has ever frustrated researchers for decades. However, without introducing any additional treatment, we show in this study that the proposed wavelet solutions can naturally cover the plate-membrane transition region as the plate deflection increases. In addition, the high accuracy and efficiency of the wavelet method in solving strongly nonlinear problems is numerically confirmed, and applicable scopes for the linear, the membrane and the von Karman plate theories are identified with respect to the large deformation bending of circular plates.  相似文献   

15.
Nonlinear dynamic responses of a laminated hybrid composite plate subjected to time-dependent pulses are investigated. Dynamic equations of the plate are derived by the use of the virtual work principle. The geometric nonlinearity effects are taken into account with the von Kármán large deflection theory of thin plates. Approximate solutions for a clamped plate are assumed for the space domain. The single term approximation functions are selected by considering the nonlinear static deformation of plate obtained using the finite element method. The Galerkin Method is used to obtain the nonlinear differential equations in the time domain and a MATLAB software code is written to solve nonlinear coupled equations by using the Newmark Method. The results of approximate-numerical analysis are obtained and compared with the finite element results. Transient loading conditions considered include blast, sine, rectangular, and triangular pulses. A parametric study is conducted considering the effects of peak pressure, aspect ratio, fiber orientation and thicknesses.  相似文献   

16.
In this paper, Von Karman ’s set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection being taken as a perturbation parameter. These sets of linear equations are solved by the spline finite-point (SFP) method and by the spline finite element (SFE) method. The solutions for rectangular plates having any length-to-width ratios under a uniformly distributed load and with various boundary conditions are presented, and the analytical formulas for displacements and deflections are given in the paper. The computer programs are worked out by ourselves. Comparison of the results with those in other papers indicates that the results of this paper are satisfactorily better.  相似文献   

17.
The problem of axisymmetric nonlinear vibration for shallow thin spherical and conical shells when temperature and strain fields are coupled is studied. Based on the large deflection theories of yon Ktirrntin and the theory of thermoelusticity, the whole governing equations and their simplified type are derived. The time-spatial variables are separated by Galerkin ‘ s technique, thus reducing the governing equations to a system of time-dependent nonlinear ordinary differential equation. By means of regular perturbation method and multiple-scales method, the first-order approximate analytical solution for characteristic relation of frequency vs amplitude parameters along with the decay rate of amplitude are obtained, and the effects of different geometric parameters and coupling factors us well us boundary conditions on thermoelustically coupled nonlinear vibration behaviors are discussed.  相似文献   

18.
This work is the continuation and the distillation of the discussion of Refs. [1-4].(A)From complementarity principle we build up dissipation mechanics in this paper.It is a dissipative theory of correspondence with the quantum mechanics.From this theorywe can unitedly handle problems of macroscopic non-equilibrium thermodynamics andviscous hydrodynamics. and handle each dissipative and irreversible problems in quantummechanics.We prove the basic equations of dissipation mechanics to eigenvalues equationsof correspondence with the Schr(?)dinger equation or Dirac equation in this paper.(B)We unitedly merge the basic nonlinear equations of dissipative type, especially theNavier-Stokes equation as a basic equation for macroscopic non-equilibrium ther-modynamics and viscous hydrodynamics into integrability condition of basic equation ofdissipation mechanics. And we can obtain their exact solutions by the inverse scatteringmethod in this paper.  相似文献   

19.
Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial differential equations of shallow shell are reduced to the nonlinear integral-differential equations by the method of Green's function. To solve the integral-differential equations, expansion method is used to obtain Green's function. Then the integral-differential equations are reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral-differential equations become nonlinear ordinary differential equations with regard to time. The amplitude-frequency response under harmonic force is obtained by considering single mode vibration. As a numerical example, forced vibration phenomena of shallow spherical shells with sinusoidal corrugation are studied. The obtained solutions are available for reference to design of corrugated shells  相似文献   

20.
This paper deals with the research of accuracy of differential equations of deflections.The basic idea is as follows.Firstly,considering the boundary effect the meridianmidsurface displacement u=0,thus we derive the deflection differential equations;secondly we accurately prove that by use of the deflection differential equations or theoriginal differential equations the same inner forces solutions are obtained;finally,weaccurately prove that considering the boundary effect the meridian surface displacementu=0 is an exact solution.In this paper we give the singular perturbation solution of thedeflection differential equations.Finally we check the equilibrium condition and prove theinner forces solved by perturbation method and the outer load are fully equilibrated.Itshows that perturbation solution is accurate.On the other hand,it shows again that thedeflection differential equation is an exact equation.The features of the new differential equations are as follows:1.The accuracies of the new differentia  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号