首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The widely utilization of phenol and its derivatives such as 3-nitrophenol (3-NP) has led to the worldwide pollution in the environment. In this study, Ti/TiO2 photoelectrode was prepared with anodic oxidation of Ti foil electrode and then the photoelectrocatalytic (PEC) degradation of 3-NP was performed via this electrode, comparing with photocatalytic (PC), electrooxidation and direct photolysis by ultraviolet light. A significant photoelectrochemical synergetic effect in 3-NP degradation was observed on the Ti/TiO2 electrode and rate constant for the PEC process of Ti/TiO2 electrode was about three times as high as its PC degradation process. 3-NP concentration monitoring was carried out with differential pulse voltammetry. Results showed that PEC degradation has highest effect on concentration decreasing of 3-NP at solution and degraded it about 38 %, while other processes degradation efficiencies were about 4, 7, and 12 % for electrooxidation, direct photolysis and photocatalytic degradation, respectively. Finally, effects of solution pH and applied potential on degradation efficiency were studied and results showed that optimum pH for degradation is equal 4.00 and optimum potential is 1.2 V vs. Ag|AgCl|KCl (3M) reference electrode.  相似文献   

2.
应用电化学阳极氧化法在纯Ti基底上制备高度有序的TiO2纳米管阵列,考察了Ti/TiO2光阳极的光电化学响应.以苯酚溶液为目标污染物,研究Ti/TiO2电极的光电催化性能,并与光催化性能进行比较.结果表明,该电极光电催化性能优于光催化性能.施加0.6 V电压时,光电催化性能最好.电化学阻抗谱分析显示,光电催化和光催化降解过程的速控步骤均为表面反应步骤,外加偏压减小了界面电荷转移阻抗,提高了光生载流子的分离效率.  相似文献   

3.
低温吸附制备Au-TiO2复合薄膜及其光电化学性质   总被引:1,自引:0,他引:1  
傅平丰  张彭义 《无机化学学报》2009,25(11):2026-2030
在低温条件下将预先合成的Au溶胶吸附到TiO2薄膜上以制备纳米Au-TiO2复合薄膜,以超高分辨率场发射扫描电镜(FESEM)、X射线衍射(XRD)及X射线光电子能谱(XPS)表征Au-TiO2膜,并在UV辐照下测定了Au-TiO2薄膜电极的光电化学性质。纳米Au呈金属态,平均粒径为(4.3±1.2) nm,负载量高,均匀地沉积于TiO2薄膜表面。光电化学测试表明,沉积纳米Au后,TiO2电极的光生电流提高近5倍,光生电压明显向负值增大,说明纳米Au可增强光生载流子的分离效率,促进电荷在电极与溶液界面间的转移。Au-TiO2电极的电荷传递法拉第阻抗(Rct)是TiO2电极的一半,说明负载的纳米Au粒抑制了光生电子-空穴的复合,提高了电极中载流子浓度。  相似文献   

4.
A commercially available TiO2 powder (Degussa P25) has been used to prepare thin films on graphite plates. The photoelectrochemical degradation of rhodamine B was investigated using this photoelectrode. The effects of applied potential, pH, and initial rhodamine B concentration on the photoelectrocatalytic (PEC) degradation of rhodamine B using ultraviolet illuminated TiO2/graphite (TiO2/C) thin film electrode were examined and discussed. Also, direct photolysis, electrochemical oxidation, photocatalytic, and PEC degradation of rhodamine B were compared. Results show that the best responses for PEC are obtained at applied potential of 1.2?V vs. reference electrode, pH?4.0, and initial rhodamine B concentration of 4.2?mg?L?1.  相似文献   

5.
A novel ceria (CeO2)–ordered mesoporous carbon (OMC) modified electrode for the sensitive amperometric determination of hydrazine was reported. CeO2–OMC composites were synthesized via a hydrothermal method at a relatively low temperature (180 °C) and characterized by scanning electron microscopy (SEM), transmission electron microcopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The CeO2–OMC modified glassy carbon electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) and indicated good electrocatalytic effect to the oxidation of hydrazine. Under the optimized conditions, the present sensor could be used to measure hydrazine in wide linear range from 40 nM to 192 μM (R2 = 0.999) with a low detection limit of 12 nM (S/N = 3). Additionally, the sensor has been successfully applied to detect hydrazine in real water samples and the recoveries were between 98.2% and 105.6%. Eventually, the sensor exhibited an excellent stability and reproducibility as a promising method for determination of hydrazine.  相似文献   

6.
In this study, a new strategy for the preparation of a modified glassy carbon electrode (GCE) based on a novel nano-sensing layer for the electrocatalytic oxidation of hydrazine was suggested. The suggested nano-sensing layer was prepared with the immobilisation of silver nanoparticles (AgNPs) on ordered mesoporous carbon. The morphology and properties of the prepared nanocomposite on the surface of GCE were characterised by scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption, X-ray powder diffraction and electrochemical impedance spectroscopy. The electrochemical response characteristics of the modified electrode towards the target analyte were investigated by cyclic voltammetry. Under optimal experimental conditions, the suggested modified GCE showed excellent catalytic activity towards the electro-oxidation of hydrazine (pH = 7.5) with a significant increase in anodic peak currents in comparison with the unmodified GCE. By differential pulse voltammetry and amperometric methods, the suggested sensor demonstrated wide dynamic concentration ranges of 0.08–33.8 µM and 0.01–128 µM with the detection limit (S/N = 3) of 0.027 and 0.003 µM for hydrazine, respectively. The suggested hydrazine sensor was successfully applied for the highly sensitive determination of hydrazine in different real samples with satisfactory results.  相似文献   

7.
A “green” method for production of diethyl aminomalonate was presented by electrocatalytic reduction of diethyl oximinomalonate (DEOM) to diethyl aminomalonate in the acetic acid and sodium acetate medium at the surface of Ti/nanoporous TiO2 electrode. The heterogeneous catalytic redox behaviour of a nanoporous TiO2 film electrode surface was investigated by cyclic voltammetry (CV). A comparison of the CV recorded in the absence and in the presence of DEOM confirmed the catalytic reduction of DEOM by Ti(IV)/Ti(III) redox system on the nanoporous TiO2 film surface.  相似文献   

8.
In the present study, the possibility to use Ti/RuO2 electrode as capacitor for storage of photoelectrons generated under UV irradiation in Ti/TiO2 photoelectrode has been investigated. A light-sensitive TiO2 layer has been formed by means of anodizing Ti electrode in the solution of 0.5 M H2SO4. A layer of RuO2, exhibiting the properties of electrochemical capacitor, has been formed by means of thermal decomposition of RuOHCl3 also on Ti substrate. The photocharging capability of RuO2 has been studied by means of short-circuiting Ti/RuO2 electrode with Ti/TiO2 photoelectrode in deaerated solution of 0.1 M KOH. It has been shown that the intensity of photocurrent flowing from Ti/TiO2 to Ti/RuO2 electrode depends mainly on the potential of the latter. Maximum value of photocurrent density was ∼180 μA cm−2, which corresponded to maximum value of photon-to-electron conversion efficiency (IPCE) of about 60%. The amount of photogenerated charge Q ph, which can be stored, depends on the capacitance of RuO2 coating. Under the conditions of the experiment, Q ph ranged from ∼35 to ∼50 mC, which corresponded to a specific charge of RuO2 coating ranging between ∼20 and ∼30 mAh g−1.  相似文献   

9.
Three glass electrodes covered with Co-cobaltite/SnO2:F (to obtain conducting glass electrodes) modified with p-Ni-tetraaminophenylporphyrin are described. In one electrode the porphyrin was absorbed on the electrode surface at room temperature, in another the porphyrin was electropolymerized on the electrode surface by cyclic voltammetry, and in the third the bare electrode was immersed in DMF containing the porphyrin and refluxed 6?h at 150°C. The three electrodes were tested as electrocatalysts for the oxidation of hydrazine and as potentiometric sensors of this chemical. The electrode modified by refluxing showed good electrocatalytic behavior as well as a linear relationship between its open circuit potential and the concentration of hydrazine in a concentration range from 0.16 to 12?µM, with fast response. These characteristics indicate that the conducting glass electrode of Co-cobaltite/SnO2:F covered with p-Ni-tetraaminophenylporphyrin by the reflux method is a good potentiometric sensor of hydrazine. The active site is probably the ligand that changes its electron density by formation of a supramolecular system.  相似文献   

10.
A new photoelectrochemical method for the determination of glucose based on the photoelectrochemical effect of poly(thionine) photoelectrode to hydrogen peroxide (H2O2) was reported. The H2O2‐sensitive photoelectrode was fabricated by electropolymerizing thionine on the surface of ITO electrode. And then glucose oxidase was immobilized on the photoelectrode via the aid of chitosan enwrapping, forming an enzyme‐modified photoelectrode. The photoelectrode was employed as an electron acceptor; H2O2 from the catalytic reaction of enzyme was employed as an electron donor, developing an analytical method of glucose without hydrogen peroxidase. In the paper, the photoelectrochemical effects of photoelectrode to H2O2 and glucose were studied. The effects of the bias voltage and the electrolyte pH on the photocurrent were investigated. The linear response of glucose concentrations ranged from 0.05 to 2.00 mmol/L was obtained with a detection limit of 22.0 µmol/L and sensitivity of 73.2 nA/(mmol·L?1). The applied feasibility of method was acknowledged through monitoring the glucose in practical samples.  相似文献   

11.
A very effective electrochemical sensor for the analysis of propranolol was constructed using TiO2/MWCNT film deposited on the pencil graphite electrode as modifier. The modified electrode represented excellent electrochemical properties such as fast response, high sensitivity and low detection limit. The proposed sensor showed an excellent selective response to propranolol in the presence of foreign species and other drugs. The electrochemical features of the modified electrode were investigated by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) technique which indicated a decrease in resistance of the modified electrode versus bare PGE and MWCNT/PGE. The surface morphology for the modified electrode was determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). Differential pulse technique (DPV) was used to determine propranolol which showed a good analytical response in the linear range of 8.5×10−8-6.5×10−6 M with a limit of detection 2.1×10−8 M. The TiO2/MWCNT/PGE sensor was conveniently applied for the measurement of propranolol in biological and pharmaceutical media.  相似文献   

12.
In the present paper, the use of a novel carbon paste electrode modified by N,N′(2,3-dihydroxybenzylidene)-1,4-phenylene diamine (DHBPD) and TiO2 nanoparticles prepared by a simple and rapid method for the determination of hydrazine (HZ) was described. In the first part of the work, cyclic voltammetry was used to investigate the redox properties of this modified electrode at various solution pH values and at various scan rates. A linear segment was found with a slope value of about 48 mV/pH in the pH range 2.0–12.0. The apparent charge transfer rate constant (k s) and transfer coefficient (α) for electron transfer between DHBPD and TiO2 nanoparticles-modified carbon paste electrode were calculated. In the second part of the work, the mediated oxidation of HZ at the modified electrode was described. It has been found that under optimum condition (pH 8.0) in cyclic voltammetry, a high decrease in overpotential occurs for oxidation of HZ at the modified electrode. The values of electron transfer coefficients (α) and diffusion coefficient (D) were calculated for HZ, using electrochemical approaches. Differential pulse voltammetry exhibited a linear dynamic range from 1.0 × 10−8 to 4.0 × 10−6 M and a detection limit (3σ) of 9.15 nM for HZ. Finally, this method was used for the determination of HZ in water samples, using standard addition method.  相似文献   

13.
A method for Ti/TiO2 photoelectrode preparation using laser calcination instead of oven calcination process was introduced. The prepared TiO2 film was investigated by X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and amperometry, and it was found that the prepared electrode mainly consisted of anatase TiO2 nanoparticles on its surface and exhibited a superior photocatalytic activity. The electrode was employed as a sensor to measure chemical oxygen demand (COD) of the wastewater. The measuring principle was based on the photocurrent responses of the electrode which were proportional to the COD values. Under the optimized experimental conditions, the linear range was 50–2000 mg L−1, and the detection limit was 16 mg L−1 (S/N=3). This method was characterized by short analysis time, simplicity, low environmental impact and long lifetime of the sensor. Additionally, the COD values obtained from the proposed and conventional methods agreed well as demonstrated by the high significant correlation between the two sets of COD values (R=0.9895, n=25).  相似文献   

14.
It was found that the photoelectrochemical performance and photocatalytic activity of rod-type TiO2 electrodes were affected by various post-calcination treatments, for example, calcination in NH3 or under vacuum. Post-calcination treatment in NH3 at 773 K was particularly effective in increasing the photoelectrochemical performance and photocatalytic activity of rod-type TiO2 electrodes. A unique photoelectrochemical circuit was constructed by connecting a rod-type TiO2 electrode to a Pt electrode through a silicon solar cell in which the negative bias was applied on the rod-type TiO2 electrode. It was found that the photoelectrochemical circuit can effectively oxidize ethanethiol in water into CO2.  相似文献   

15.
A very stable electroactive film of catechin was electrochemically deposited on the surface of activated glassy carbon electrode. The electrochemical behavior of catechin modified glassy carbon electrode (CMGCE) was extensively studied using cyclic voltammetry. The properties of the electrodeposited films, during preparation under different conditions, and the stability of the deposited film were examined. The charge transfer coefficient (α) and charge transfer rate constant (k s) for catechin deposited film were calculated. It was found that the modified electrode exhibited excellent electrocatalytic activity toward hydrazine oxidation and it also showed a very large decrease in the overpotential for the oxidation of hydrazine. The CMGCE was employed to study electrocatalytic oxidation of hydrazine using cyclic voltammetry, rotating disk voltammetry, chronoamperometry, amperometry and square-wave voltammetry as diagnostic techniques. The catalytic rate constant of the modified electrode for the oxidation of hydrazine was determined by cyclic voltammetry, chronoamperometry and rotating disk voltammetry and was found to be around 10−3 cm s−1 . In the used different voltammetric methods, the plot of the electrocatalytic current versus hydrazine concentration is constituted of two linear segments with different ranges of hydrazine concentration. Furthermore, amperometry in stirred solution exhibits a detection limit of 0.165 μM and the precision of 4.7% for replicate measurements of 40.0 μM solution of hydrazine.  相似文献   

16.
A nano-Au modified TiO2 electrode was prepared via the oxidation of Ti sheet in flame and subsequent modification with gold nanoparticles. The results of SEM and TEM measurements show that the Au nanoparticles are well dispersed on TiO2 surface. A near 2-fold enhancement in photocurrent was achieved upon the modification with Au nanoparticles. From the results of photocurrent and electrochemical impedance experiments it was found that the flatband potential of nano-Au/TiO2 electrode negatively shifted about 100 mV in 0.5 mol/L Na2SO4 solutions compared with that of bare TiO2 electrode. The improvement of photoelectrochemical performance was explained by the inhibition for charge recombination of photo-induced electrons and holes, and the promotion for interracial charge-transfer kinetics at nano-Au/TiO2 composite film. Such nanometal-semiconductor composite films have the potential application in improving the performance of photoelectrochemical solar cells.  相似文献   

17.
We report here the synthesis of binderless and template-less three-dimensional (3D) pinecone-shaped Pt/TiO2/Ti mesh structure. The TiO2 hydrothermally synthesized onto Ti mesh is composed of a mixture of flower-like nanorods and vertically aligned bar-shaped structures, whereas Pt film grown by pulsed laser deposition displays a smooth surface. XRD analyses reveal an average crystallite size of 41.4 nm and 68.5 nm of the TiO2 nanorods and Pt, respectively. In H2SO4 solution, the platinum oxide formation at the Pt/TiO2/Ti mesh electrode is 180 mV more negative than that at the Pt/Ti mesh electrode, indicating that TiO2 provides oxygeneous species at lower potentials, which will facilitate the removal of CO-like intermediates and accelerate an ethanol oxidation reaction (EOR). Indeed, the Pt/TiO2/Ti mesh catalyst exhibits current activity of 1.19 mA towards an EOR at a remarkably superior rate of 4.4 times that of the Pt/Ti mesh electrode (0.27 mA). Moreover, the presence of TiO2 as a support to Pt delivers a steady-state current of 2.1 mA, with an increment in durability of 6.6 times compared to Pt/Ti mesh (0.32 mA). Pt is chosen here as a benchmark catalyst and we believe that with catalysts that perform better than Pt, such 3D pinecone structures can be useful for a variety of catalytic or photoelectrochemical reactions.  相似文献   

18.
Au/TiO2/Ti electrode was prepared by a two-step process of anodic oxidation of titanium followed by cathodic electrodeposition of gold on resulted TiO2. The morphology and surface analysis of Au/TiO2/Ti electrodes was investigated using scanning electron microscopy and EDAX, respectively. The results indicated that gold particles were homogeneously deposited on the surface of TiO2 nanotubes. The nanotubular TiO2 layers consist of individual tubes of about 60–90 nm in diameter, and the electrode surface was covered by gold particles with a diameter of about 100–200 nm which are distributed evenly on the titanium dioxide nanotubes. This nanotubular TiO2 support provides a high surface area and therefore enhances the electrocatalytic activity of Au/TiO2/Ti electrode. The electrocatalytic behavior of Au/TiO2/Ti electrodes in the glucose electro-oxidation was studied by cyclic voltammetry. The results showed that Au/TiO2/Ti electrodes exhibit a considerably higher electrocatalytic activity toward the glucose oxidation than that of gold electrode.  相似文献   

19.
Glassy carbon electrodes modified with (5-amino-1,10-phenanthroline)bis(bipyridine)ruthium(II) chloride hydrate, [(bpy)2Ru(5-phenNH2)]Cl2·H2O, are shown to oxidize hydrazine with excellent sensitivity. The presence of an amine group on the ruthenium complex facilitates electropolymerization onto the electrode surface. Using cyclic voltammetry, a large catalytic current is observed upon oxidation of hydrazine in phosphate buffer (pH 5.0), compared to the current obtained from the ruthenium-modified electrode with no hydrazine present. The sensitivity of cyclic voltammetry is sufficient for obtaining a linear calibration curve for hydrazine over the range of 10−5 to 10−2 M. Hydrodynamic amperometry was used to determine the working potential for flow injection analysis. The limit of detection for hydrazine was determined to be 8.5 μM using FIA. The thickness of these films was shown to increase linearly with the number of electropolymerization cycles, in the range of 1000-2500 nm for 5-20 cycles, respectively, using Rutherford backscattering spectrometry (RBS). RBS analysis also suggests that the film is multilayered with the outermost layers containing a high ruthenium concentration, followed by layers where the concentration of ruthenium decreases linearly and approaches zero at the electrode surface.  相似文献   

20.
A unique photoelectrochemical circuit system was constructed by connecting a rod-type TiO2 electrode with a Pt electrode through a silicon solar cell. The photoelectrochemical circuit system efficiently oxidized ethanethiol in water into CO2, while the reaction rate strongly depended on the calcination temperature of the rod-type TiO2 electrode. Furthermore, it was found that a negative bias applied to the rod-type TiO2 electrode by a silicon solar cell enhances the oxidation rate of ethanethiol in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号