首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To explore the dependences of morphology and electrochemical performance of polyaniline/nickel hexacyanoferrate (PANI/NiHCF) nanogranules on pH value of the reaction system, electrodeposition of PANI/NiHCF nanogranules was performed across a pH range from 0 to 7 on carbon nanotubes (CNTs)-modified platinum substrate by cyclic voltammetry in a mixture of 0.002 mol L?1 NiSO4, 0.25 mol L?1 Na2SO4, 0.002 mol L?1 K3Fe(CN)6, and 0.01 mol L?1 aniline solutions. The morphology and structure of PANI/NiHCF nanogranules were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, respectively. The supercapacitive performances of the nanogranules were investigated with cyclic voltammetry (CV), charge/discharge tests, and electrochemical impedance spectroscopy (EIS). The results showed that the nanogranules with different morphology and sizes were obtained with the change of pH values from 0 to 7, which could control the mechanism of homogeneous or heterogeneous nucleation directly. The nanogranules were dispersed in matrix uniformly at pH 0 and pH 1, while the size of which decreased with the increase of pH values. The smooth cross-linking network structure was found from pH 2 to 7. The structure of PANI/NiHCF nanogranules had slightly changed from pH 0 to 7. PANI/NiHCF nanogranules had good electrochemical performance from pH 0 to 7 in a mixture of 0.5 mol L?1 H2SO4 and 0.5 mol L?1 KNO3 solutions, and the highest specific capacitance value of 274 F g?1 was obtained at current densities of 2 mA cm?2 in neutral medium. PANI/NiHCF nanogranules had high stability in neutral medium after 2,000 cycles by CV.  相似文献   

2.
The effect of the dispersion of zinc oxide (ZnO) nanoparticles in the zinc ion conducting gel polymer electrolyte is studied. Changes in the morphology/structure of the gel polymer electrolyte with the introduction of ZnO particles are distinctly observed using X-ray diffraction and scanning electron microscopy. The nanocomposites offer ionic conductivity values of >10?3 S cm?1 with good thermal and electrochemical stabilities. The variation of ionic conductivity with temperature follows the Vogel–Tamman–Fulcher behavior. AC impedance spectroscopy, cyclic voltammetry, and transport number measurements have confirmed Zn2+ ion conduction in the gel nanocomposites. An electrochemical stability window from ?2.25 to 2.25 V was obtained from voltammetric studies of nanocomposite films. The cationic (i.e., Zn2+ ion) transport number (t +) has been found to be significantly enhanced up to a maximum of 0.55 for the dispersion of 10 wt.% ZnO nanoparticles, indicating substantial enhancement in Zn2+ ion conductivity. The gel polymer electrolyte nanocomposite films with enhanced Zn2+ ion conductivity are useful as separators and electrolytes in Zn rechargeable batteries and other electrochemical applications.  相似文献   

3.
In this paper, poly[poly(N-vinyl-carbazole)] (PPVK) films electrodeposited in tetrahydrofuran (THF) containing 12 % boron trifluoride diethyl etherate (BFEE) were studied as electrode active material for supercapacitors. The morphology and thermal property were characterized by SEM, atomic force microscopy (AFM), and thermogravimetry (TG), respectively. The electrochemical capacitive behaviors of the PPVK films were also investigated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The electrochemical results showed that the specific capacitance of PPVK films in CH3CN solution was about 126 mF cm?2 at 1.5 mA cm?2 and the capacitance retention was only 14.4 % after 1000 cycles. It was exciting to improve the specific capacitance up to 169.3 mF cm?2 at 1.5 mA cm?2 and to make the cyclic stability increase to 81.8 % capacitance retention after 5000 cycles when the equivalent BFEE was added into the CH3CN solution containing 0.05 M Bu4NBF4 electrolyte. These results clearly demonstrated that BFEE was an efficient promoter for the enhancement of the capacitance performance of PPVK films. Therefore, with the help of BFEE electrolyte, the PPVK films have potential application as capacitive materials in high-performance energy storage devices.  相似文献   

4.
Polyaniline (PANI)/graphene nanosheet (GNS) composites were prepared by a chemical oxidation polymerization. The morphology, structure, and crystallinity of the composites were examined by scanning electron microscopy, transition electron microscopy, and X-ray diffraction. Electrochemical properties were characterized by cyclic voltammetry in 1 M H2SO4 electrolyte. GNS are considered as supporting materials which can provide a large number of active sites. The PANI nanofibers with diameter of 50 nm were homogeneously coated on the surface of GNS. The PANI/GNS composites exhibited a better electrochemical performance than the pure individual components. The PANI/GNS composites showed the highest specific capacitance 923 Fg?1 at 10 mVs?1 compared to 465 Fg?1 for pure PANI and 99 Fg?1 for GNS.  相似文献   

5.
A self-assembled sensor based on a boron-doped diamond was investigated as a sensitive tool for voltammetric analysis of a member of a pyridine herbicide family - picloram. A cyclic voltammetry and a differential pulse voltammetry were applied for investigation of the voltammetric behaviour and quantification of this herbicide. Picloram yielded one well-developed irreversible oxidation signal at a very positive potential about +1.5 V vs. Ag/AgCl/3 mol L?1 KCl electrode in an acidic medium and 1 mol L?1 H2SO4 was chosen as a suitable supporting electrolyte. Operating parameters of differential pulse voltammetry were optimized and the proposed voltammetric method provided a high repeatability (a relative standard deviation of 20 repeated measurements at a concentration level of picloram of 50 µmol L?1 equaled to 2.58%), a linear concentration range from 2.5 to 90.9 µmol L?1 and a low limit of detection (LD = 1.64 µmol L?1). Practical usefulness of the ‘environmentally-green’ electrochemical sensor was verified by an analysis of spiked water samples with satisfactory recoveries.  相似文献   

6.
Graphene nanosheets, polyaniline (PANI), and nanocrystallites of transition metal ferrite {Fe3O4 (Mag), NiFe2O4 (NiF), and CoFe2O4 (CoF)} have been prepared and characterized via XRD, FTIR, SEM, TEM, UV–vis spectroscopy, cyclic voltammetry, galvanostatic charge discharges, and impedance spectroscopy. Electrochemical measurements showed that supercapacitances of hybrid electrodes made of the ternary materials are higher than that of hybrid electrode made of binary or single material. The ternary hybrid CoF/graphene (G)/PANI electrode exhibits a highest specific capacitance reaching 1123 Fg?1, an energy density of 240 Wh kg?1 at 1 A g?1, and a power density of 2680 Wkg?1 at 1 A g?1 and outstanding cycling performance, with 98.2% capacitance retained over 2000 cycles. The extraordinary electrochemical performance of the ternary CoF/G/PANI hybrid can be attributed to the synergistic effects of the individual components. The PANI conducting polymer enhances an electron transport. The Ferrite nanoparticles prevent the restocking of the carbon sheets and provide Faradaic processes to increase the total capacitance.  相似文献   

7.
Spinel Li4Mn5O12 nanoparticles are successfully prepared by water-in-oil microemulsion method and characterized by X-ray diffraction and scanning electron microscopy. The Li4Mn5O12 nanoparticles have sphere-like morphology with particle size less than 50 nm. The Li4Mn5O12 and activated carbon (AC) were used as electrodes of Li4Mn5O12/AC supercapacitor, respectively. The electrochemical capacitance performance of the supercapacitor was investigated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The results showed that the single electrode was able to deliver specific capacitance 252 F g?1 within potential range 0–1.4 V at a scan rate of 5 mV s?1 in 1 mol L?1 Li2SO4 solution, and it also showed high coulombic efficiency close to 100%. This material exhibited a good cycling performance.  相似文献   

8.
A nanostructured manganese dioxide electrode material was prepared using a solid‐reaction route starting with MnCl2·4H2O and NH4HCO3, and its electrochemical performance as a positive electrode for MnO2/activated carbon hybrid supercapacitor with 1 mol·L?1 LiOH electrolyte was reported. The material was proved to be a mixture of nanostructured γ‐MnO2 and α‐MnO2 containing some bound water in the structure, which was characterized by X‐ray diffraction analysis, infrared spectrum analysis, and transmission electron microscope observation. Electrochemical properties of the MnO2 electrode and the MnO2/AC capacitor were investigated by cyclic voltammetry, ac impedance and galvanostatic charge/discharge methods. Experimental results showed that the MnO2 electrode exhibited faradaic pseudocapacitance behavior and higher specific capacitance in 1 mol·L?1 LiOH electrolyte. The MnO2/AC hybrid capacitor with 1 mol·L?1 LiOH electrolyte presented excellent rate charge/discharge ability and cyclic stability.  相似文献   

9.

Activated carbon for supercapacitor electrode was prepared from polyaniline using chemical activation with ZnCl2. The morphology, surface chemical composition, and surface area of the as-prepared carbon materials were investigated by scanning electron microscope, atomic force microscopy, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller measurement, respectively. Electrochemical characteristics were evaluated by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy tests in 6.0 mol L−1 KOH aqueous solution. The electrochemical measurements showed that ZnCl2 activation led to better capacitive performances. The activated carbon presented a high-specific gravimetric capacitance of 174 F g−1, with rectangular cyclic voltammetry curves at a scan rate of 2 mV s−1, and it remained 93% even at a high scan rate of 50 mV s−1. These demonstrated that activated carbon would be a promising electrode material for supercapacitors.

  相似文献   

10.
A simple strategy has been proposed to quantify Zn2+ ions using CeO2 nanoparticle-modified glassy carbon electrode. The CeO2 nanoparticles were prepared by sucrose-nitrate decomposition method, and it was characterized by X-ray diffraction (XRD), FT-IR, TEM, and surface area analyzer. The synthesized CeO2 nanoparticles were used as modifier molecules as a thin film on glassy carbon electrode (GCE) in the trace level quantification of Zn2+ by using cyclic voltammetry (CV) and differential pulse anodic stripping voltammetry (DPASV) techniques. The fabricated sensor exhibited a good analytical response towards Zn2+ ions. The modified electrode showed a wide linearity in the concentration range 20–380 μg L?1 with a limit of detection 0.36 μg L?1. The proposed electrochemical sensor was successfully applied to trace level Zn2+ quantification from real sample matrices.  相似文献   

11.
Proton-conducting free standing gel polymer electrolyte (GPE) films containing protic ionic liquid, 1-butyl-3-methylimidazolium hydrogen sulphate, immobilized in blend of poly(vinylidenefluoride-co-hexafluoropropylene) and poly(vinylpyrrolidone) have been prepared by solution-cast technique. Films have been characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), differential scanning calorimetry (DSC), complex impedance spectroscopy, and cyclic voltammetry. Ionic conductivity of the semicrystalline and porous GPE films has been obtained as ~3.9?×?10?3 S cm?1 at room temperature. Protonic nature of conduction in the films has been established by performing cyclic voltammetry and complex impedance spectroscopy on the cells having both blocking (stainless steel) and both reversible electrodes (Zn + ZnSO4.7H2O). The electrochemical stability window of the films has been found as ~3.8 V. The highest conducting film has been used as a separator and proton conductor to fabricate a proton battery of configuration Zn + ZnSO4.7H2O |GPE film| PbO2 + V2O5. The battery shows an open circuit voltage of ~1.62 V. Energy density of the cell has been obtained as 35.2 W h kg?1 for low current drain. Rechargeability of the cell has been tested for ten cycles. The maximum discharge capacity of the cell has been obtained as ~2.50 mA h g?1 during the first discharge cycle.  相似文献   

12.
In this study, hierarchical polyaniline (PANI) nanosheets were electrochemically deposited on indium tin oxide nanoparticles coated fluorine-doped tin oxide glass (ITONPs-FTO) substrate from an aqueous solution containing 0.5 M aniline and 1 M H2SO4. The ITONPs provide efficient support with high electroactive surface area in the electrochemical deposition of PANI and produce excellent PANI films. The developed PANI film deposited on the ITONPs-FTO electrode was characterized via field-emission scanning-electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. A hybrid supercapacitor (HSC) was fabricated using the developed PANI deposited ITONPs-FTO as a positrode and the jute sticks derived activated carbon nanosheets coated FTO (JAC-FTO) as a negatrode. Because of its high capacitive performance, unique structures of electrode materials, and optimum operating potential window, the fabricated PANI-ITONPs-FTO//JAC-FTO HSC performed excellently in 0.1 M HCl aqueous electrolyte, delivering a high areal capacitance of 318 mF/cm2 at a 1.0 mA/cm2 current density and exhibit a high energy density of 28 µWh/cm2 at a high power density of 400 µW/cm2. Moreover, the HSC exhibits excellent cyclic stability with ~ 87% Coulombic efficiency and ~ 91% capacitance retention after 1000 charge–discharge cycles.  相似文献   

13.
A novel platform for electroanalysis of isoniazid based on graphene-functionalized multi-walled carbon nanotube as support for iron phthalocyanine (FePc/f-MWCNT) has been developed. The FePc/f-MWCNT composite has been dropped on glassy carbon forming FePc/f-MWCNT/GC electrode, which is sensible for isoniazid, decreasing substantially its oxidation potential to +200 mV vs Ag/AgCl. Electrochemical and electroanalytical properties of the FePc/f-MWCNT/GC-modified electrode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electrochemical microscopy, and amperometry. The sensor presents better performance in 0.1 mol L?1 phosphate buffer at pH 7.4. Under optimized conditions, a linear response range from 5 to 476 μmol L?1 was obtained with a limit of detection and sensitivity of 0.56 μmol L?1 and 0.023 μA L μmol?1, respectively. The relative standard deviation for 10 determinations of 100 μmol L?1 isoniazid was 2.5%. The sensor was successfully applied for isoniazid selective determination in simulated body fluids.  相似文献   

14.
The homogeneous polyaniline–graphene oxide (PANI-GO) nanocomposites were facilely assembled with a redox system in which cumene hydroperoxide (CHP) and iron dichloride (FeCl2) acted as oxidant and reductant, respectively. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that PANI scales coated uniformly on the surface of GO sheets owing to the synergistic effect between the PANI and GO. The obtained PANI-GO nanocomposites exhibited improved electrochemical performance as an electrode material for supercapacitors compared with the pure PANI. The specific capacitance of the PANI-GO nanocomposites was high up to 308.3 F g?1, much higher than that of the pure PANI with specific capacitance of 150 F g?1 at a current density of 1 A g?1 in 2 M H2SO4 electrolyte. The Raman and XPS results illustrated that enhanced electrochemical performance might be attributed to the π-π conjugation between the PANI and GO sheets.  相似文献   

15.
The high-quality CTAB-stabilized gold nanorods (Au NRs) were prepared by the way of seed-mediated protocol. The microstructure and composition of the Au NRs were identified by transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV–visible spectroscopy. Further, a novel non-enzymatic electrochemical sensor of nitrite based on Au NRs–Nafion-modified glassy carbon electrode (GCE) was successfully developed. Under the optimum experimental conditions, the electrochemical behaviors of nitrite on the Au NRs–Nafion-modified GCE were systematically studied by electrochemical impedance spectroscopy, cyclic voltammetry and chronoamperometry. The electrochemical investigations indicated that the Au NRs–Nafion-modified GCE had a wide linear range of 3.0 × 10?6–6.0 × 10?3 mol L?1, an acceptable sensitivity of 130.9 ± 0.05 μA mM?1 cm?2, a fast response time of 3 s and a low detection limit of 0.64 ± 0.02 μmol L?1 at the signal-to-noise ratio of 3 (S/N = 3). Additionally, the electrochemical sensor also showed good stability and favorable anti-interference capability for the detection of nitrite.  相似文献   

16.
In this work, polypyrrole (PPy) and its respective composite with functionalized multi-walled carbon nanotubes (MWCNT) were obtained by chemical polymerization of the monomer pyrrole in aqueous solution. The obtained PPy as well as its composite (PPy-MWCNT) were characterized by Fourier transform infrared spectroscopy (FTIR) and were used to produce nanostructured self-assembled (SA) films deposited onto glass substrates covered with indium tin oxide (ITO). The SA films were produced with alternated layers of polystyrene sulphonated (PSS) and were characterized by UV-visible, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) analyses. The applicability of the SA films was evaluated by square wave voltammetry (SWV) with standard additions of aliquots of Diuron pesticide in Britton-Robinson buffer solutions (pH = 2.0). The results showed an oxidation peak at 0.23 V which increases in function of the Diuron concentration for both the SA films. It was also observed that the SA film based on the composite (PPy-MWCNT/PSS) showed a peak current intensity about ten times higher in comparison with its unmodified counterpart (PPy/PSS) for a Diuron concentration of 4.29 × 10?5 mol L?1, indicating a synergic effect between PPy and MWCNT in the composite. The limits of quantification (LOQ) and limits of detection (LOD) were respectively 8.6 × 10?7 mol L?1 and 2.6 × 10?7 mol L?1.  相似文献   

17.
Single-crystalline nanorods and sea urchin-like morphology of the γ-MnO2 nanostructures were successfully synthesized by hydrothermal method at different synthesis durations. The as-synthesized products were characterized by the techniques X-ray powder diffraction (XRD), field emission gun-scanning electron microscope (FEG-SEM) coupled with energy-dispersive X-ray elemental analysis (EDX), transmission electron microscope (TEM), isotherms of N2 adsorption/desorption and BET-BJH models. The effect of synthesis duration on the morphology, porous structure, and crystallographic form of MnO2 powders was studied. The electrochemical reactivity of as-prepared powders was investigated in 1 mol L?1 KOH by both cyclic voltammetry and impedance spectroscopy by using a micro-cavity electrode. The results show that the best electrochemical reactivity of the MnO2 powder was obtained with synthesis duration of 24 h.  相似文献   

18.
MnO2/graphene oxide sheet composite (MnO2/GOS) has been co-electrodeposited on the thermally treated carbon paper (TTCP) in phosphate buffer solution containing GOS and KMnO4. The resulted samples have been characterized by scanning and transmission electron microscopy, Raman, X-ray diffraction, and X-ray photoelectron energy spectroscopy. The results show that the synthesized MnO2 may be δ-MnO2 and the morphology of MnO2/GOS is very different from that of MnO2, indicating that the introduction of GOS in electrolyte can influence the morphology during the deposition. The capacitive properties of the samples are investigated by using cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The specific capacitance of MnO2 for MnO2/GOS can reach about 829 F g?1 at discharged current density of 1.0 A g?1 in 1 M Na2SO4 aqueous solution, which is larger than that of MnO2 deposited on TTCP. The composite of MnO2/GOS also exhibits excellent cyclic stability with a decrease of 18.5 % specific capacitance after 1,500 cycles.  相似文献   

19.
A promising nickel cobaltite oxide (NiCo2O4) composite electrode material was successfully synthesized by a sol-gel method and followed by a simple sintering process. The microstructure and surface morphology of NiCo2O4 modified by hexadecyltrimethylammonium bromide (CTAB) and polyvinyl alcohol were physically characterized by powder X-ray diffraction and scanning electron microscopy. Meanwhile, electrochemical performance was widely investigated in 2 M KOH aqueous electrolyte using cyclic voltammetry, galvanostatic charge-discharge test, and electrochemical impedance spectroscopy. The results show that evident porous microstructure was successfully fabricated by CTAB. The NiCo2O4 controlled by CTAB exhibited highly specific capacitance of 1,440 F?g?1 at a current density of 5 mA?cm?2. Remarkably, it still displays desirable cycle retention of 94.1 % over 1,000 cycle numbers at a current density of 20 mA?cm?2. The excellent electrochemical performance suggests its potential application in electrode material for electrochemical capacitors.  相似文献   

20.
In the present work, we investigated the immobilization and electrochemical behavior of Reactive Blue 4 dye on 3-aminopropyl-functionalized silica. The electrochemical behavior of the modified electrode and the electro-oxidation of dipyrone were studied by cyclic voltammetry. The modified electrode showed a well-defined redox coupling with a formal potential of 0.45 V (vs. saturated calomel reference electrode) assigned to anthraquinone/anthrahydroquinone redox process (pH?=?2). The modified electrode also demonstrated electrocatalytic activity and an increased peak current towards the oxidation of dipyrone at a reduced overall potential. The electrocatalytic process was found to be highly dependent on the pH of the supporting electrolyte. The voltammetric responses for dipyrone were linear in the concentration range of 49.9 to 440 μmol L?1 at a pH of 2.0 with a detection limit and sensitivity of 22.0 μmol L?1 and 0.0278 μA mmol L?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号