首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vector space \({\otimes^{n}\mathbb{C}^2}\) upon which the XXZ Hamiltonian with n spins acts bears the structure of a module over both the Temperley–Lieb algebra \({{\rm TL}_{n}(\beta = q + q^{-1})}\) and the quantum algebra \({{\rm U}_{q} \mathfrak{sl}_2}\) . The decomposition of \({\otimes^{n}\mathbb{C}^2}\) as a \({{\rm U}_{q} \mathfrak{sl}_2}\) -module was first described by Rosso (Commun Math Phys 117:581–593, 1988), Lusztig (Cont Math 82:58–77, 1989) and Pasquier and Saleur (Nucl Phys B 330:523–556, 1990) and that as a TL n -module by Martin (Int J Mod Phys A 7:645–673, 1992) (see also Read and Saleur Nucl Phys B 777(3):316–351, 2007; Gainutdinov and Vasseur Nucl Phys B 868:223–270, 2013). For q generic, i.e. not a root of unity, the TL n -module \({\otimes^{n}\mathbb{C}^2}\) is known to be a sum of irreducible modules. We construct the projectors (idempotents of the algebra of endomorphisms of \({\otimes^{n}\mathbb{C}^2}\) ) onto each of these irreducible modules as linear combinations of elements of \({{\rm U}_{q} \mathfrak{sl}_2}\) . When q = q c is a root of unity, the TL n -module \({\otimes^{n}\mathbb{C}^2}\) (with n large enough) can be written as a direct sum of indecomposable modules that are not all irreducible. We also give the idempotents projecting onto these indecomposable modules. Their expression now involves some new generators, whose action on \({\otimes^{n}\mathbb{C}^2}\) is that of the divided powers \({(S^{\pm})^{(r)} = \lim_{q \rightarrow q_{c}} (S^{\pm})^r/[r]!}\) .  相似文献   

2.
The aim of the present paper is devoted to the investigation of some geometrical properties on the middle envelope in terms of the invariants of the third quadratic form of the normal line congruence CN . The mixed middle curvature and mixed curvature on CN are obtained in tenus of the Mean and Gauss curvatures of the surface of reference. Our study is considered as a continuation to Stephanidis ([1], [2], [3], [4], [5]). The technique adapted here is based on the methods of moving frames and their related exteriour forms [6] and [7].  相似文献   

3.
4.
In this paper we study the vertices of indecomposable Specht modules for symmetric groups. For any given indecomposable non-projective Specht module, the main theorem of the article describes a p-subgroup contained in its vertex. The theorem generalizes and improves an earlier result due to Wildon in [13].  相似文献   

5.
The totally nonnegative part of a partial ag variety G/P has been shown in [18], [17] to be a union of semialgebraic cells. Moreover, the closure of a cell was shown in [19] to be a union of smaller cells. In this paper we provide glueing maps for each of the cells to prove that (G/P)?0 is a CW complex. This generalizes a result of Postnikov, Speyer and the second author [15] for Grassmannians.  相似文献   

6.
7.
The theory of Q m-normal families, m ∈ ?, was developed by P. Montel for the cases m = 0 (normal families) [5] and m = 1 (quasinormal families) [4] and later generalized by C.T. Chuang [2] for any m ≥ 0. In this paper, we extend the definition to an arbitrary ordinal number α as follows. Given E ? D, define the α-th derived set $E^{(\alpha)}_D$ of E with respect to D by $(E^{(\alpha-1)}_D)^{(1)}_D$ if α has an immediate predecessor and by ${\mathop \bigcap\limits_{\beta<\alpha}} E^{(\beta)}_D$ if α is a limit ordinal. Then a family ${\cal F}$ of meromorphic functions on a plane domain D is Qα-normal if each sequence S of functions in ${\cal F}$ has a subsequence which converges locally χ-uniformaly on the domain DE, where E = E(S) ? D satisfies $E^{(\alpha)}_{D}=\emptyset$ . Inparticular, a Q 0 -normal family is a normal family, and a Q 1 -normal family is a quasi- normal family. We also give analogues to some basic results in Qm-normality theory and extend Zalcman’s Lemma to Q α -normal families where α is an infinite countable (enumerable) ordinal number.  相似文献   

8.
Let I denote an ideal in a commutative Noetherian ring R. Let M be an R-module. The I-adic completion is defined by ${\hat{M}^I = \varprojlim{}_{\alpha} M/I^{\alpha}M}$ . Then M is called I-adic complete whenever the natural homomorphism ${M \to \hat{M}^I}$ is an isomorphism. Let M be I-separated, i.e. ${\cap_{\alpha} I^{\alpha}M = 0}$ . In the main result of the paper, it is shown that M is I-adic complete if and only if ${{\rm Ext}_R^1(F,M) = 0}$ for the flat test module ${F = \oplus_{i = 1}^r R_{x_i}}$ , where ${\{x_1,\ldots,x_r\}}$ is a system of elements such that ${{\rm Rad} I = {\rm Rad}\, \underline{{\it x}} R}$ . This result extends several known statements starting with Jensen’s result [9, Proposition 3] that a finitely generated R-module M over a local ring R is complete if and only if ${{\rm Ext}^1_R(F,M) = 0}$ for any flat R-module F.  相似文献   

9.
The aim of this paper is to classify indecomposable rank two arithmetically Cohen–Macaulay (ACM) bundles on general complete intersection Calabi–Yau threefolds and prove the existence of some of them. New geometric properties of the curves corresponding to rank two ACM bundles (by Serre correspondence) are obtained. These follow from minimal free resolutions of curves in suitably chosen fourfolds (containing Calabi–Yau threefolds as hypersurfaces). A strong indication leading to existence of bundles with \(c_1\,=\,2\) , \(c_2\,=\,13\) on a quintic conjectured in Chiantini and Madonna (Le Matematiche 55:239–258, 2000), and Mohan Kumar and Rao (Cent Eur J Math 10(4):1380–1392, 2012) is found.  相似文献   

10.
The general surface group conjecture asks whether a one-relator group where every subgroup of finite index is again one-relator and every subgroup of infinite index is free (property IF) is a surface group. We resolve several related conjectures given in Fine et al. (Sci Math A 1:1–15, 2008). First we obtain the Surface Group Conjecture B for cyclically pinched and conjugacy pinched one-relator groups. That is: if G is a cyclically pinched one-relator group or conjugacy pinched one-relator group satisfying property IF then G is free, a surface group or a solvable Baumslag–Solitar Group. Further combining results in Fine et al. (Sci Math A 1:1–15, 2008) on Property IF with a theorem of Wilton (Geom Topol, 2012) and results of Stallings (Ann Math 2(88):312–334, 1968) and Kharlampovich and Myasnikov (Trans Am Math Soc 350(2):571–613, 1998) we show that Surface Group Conjecture C proposed in Fine et al. (Sci Math A 1:1–15, 2008) is true, namely: If G is a finitely generated nonfree freely indecomposable fully residually free group with property IF, then G is a surface group.  相似文献   

11.
12.
We consider the quintic generalized Korteweg–de Vries equation (gKdV) $$u_t + (u_{xx} + u^5)_x =0,$$ which is a canonical mass critical problem, for initial data in H 1 close to the soliton. In earlier works on this problem, finite- or infinite-time blow up was proved for non-positive energy solutions, and the solitary wave was shown to be the universal blow-up profile, see [16], [26] and [20]. For well-localized initial data, finite-time blow up with an upper bound on blow-up rate was obtained in [18]. In this paper, we fully revisit the analysis close to the soliton for gKdV in light of the recent progress on the study of critical dispersive blow-up problems (see [31], [39], [32] and [33], for example). For a class of initial data close to the soliton, we prove that three scenarios only can occur: (i) the solution leaves any small neighborhood of the modulated family of solitons in the scale invariant L 2 norm; (ii) the solution is global and converges to a soliton as t → ∞; (iii) the solution blows up in finite time T with speed $$\|u_x(t)\|_{L^2} \sim \frac{C(u_0)}{T-t} \quad {\rm as}\, t\to T.$$ Moreover, the regimes (i) and (iii) are stable. We also show that non-positive energy yields blow up in finite time, and obtain the characterization of the solitary wave at the zero-energy level as was done for the mass critical non-linear Schrödinger equation in [31].  相似文献   

13.
This is the first of a series of papers on partition functions and the index theory of transversally elliptic operators. In this paper we only discuss algebraic and combinatorial issues related to partition functions. The applications to index theory are in [4], while in [5] and [6] we shall investigate the cohomological formulas generated by this theory. Here we introduce a space of functions on a lattice which generalizes the space of quasipolynomials satisfying the difference equations associated to cocircuits of a sequence of vectors X, introduced by Dahmen and Micchelli [8]. This space $ \mathcal{F}(X) $ contains the partition function $ {\mathcal{P}_{(X)}} $ . We prove a “localization formula” for any f in $ \mathcal{F}(X) $ , inspired by Paradan's decomposition formula [12]. In particular, this implies a simple proof that the partition function $ {\mathcal{P}_{(X)}} $ is a quasi-polynomial on the Minkowski differences $ \mathfrak{c} - B(X) $ , where c is a big cell and B(X) is the zonotope generated by the vectors in X, a result due essentially to Dahmen and Micchelli.  相似文献   

14.
In analogy with the periods of abelian integrals of differentials of the third kind for an elliptic curve defined over a number field, we introduce a notion of periods of the third kind for a rank 2 Drinfeld ${\mathbb{F}_{q}[t]}$ -module ρ defined over an algebraic function field. In this paper we establish explicit formulae for these periods of the third kind for ρ. Combining with the main result in Chang and Papanikolas (J. Am. Math. Soc. 25:123–150, 2012), we show the algebraic independence of the periods of first, second and third kinds for ρ.  相似文献   

15.
In 1844 Liouville proved the transcendence of α = ∑h≥1 10?h h! over Q. The number α can be considered as the value of the gap power series ∧(x) =∑h≥1 at tne point 1/10 Since then, the above result has been generalized in this direction by different authors by applying improved “Liouville-estimates”. For instance, in 1973 Cijsouw and Tijdeman [2] showed that a gap series with algebraic coefficients takes on transcendental values (over Q) at non-zero algebraic points under some conditions on the growth of the coefficients and the gaps. In 1988 Bundschuh [1] resp. Zhu [9] proved the algebraic independence (over Q) of the values of several gap series at different algebraic points. In particular this result includes the algebraic independence of A(α1),…, α(αs) for non-zero algebraic numbers α1,…, αs of distinct absolute values less than 1. Moreover in [1] a set of continuum-many algebraically independent numbers was constructed. In 1978 Geijsel [4] obtained a result analogous to that of Cijsouw and Tijdeman underlying a non-archimedian valued function field over a finite field, and in 1983 Sieburg [7] was concerned with the algebraic independence of “Liouville-series” in non-archimedian valued fields of characteristic zero. In this paper some of the results of [1] resp. [9] will be transfered to the situation of some non-archimedian valued fields. If the characteristic of the field is prime, we have to require stronger conditions as in the “classical case”. An example shows that in this case the numbers A(c*i),..., A(aa) need not to be algebraically independent. But a set of continuum-many algebraically independent numbers still exists. In characteristic zero, results of the same kind will be obtained like in the “classical case”.  相似文献   

16.
Suppose R is a d-dimensional reduced F-finite Noetherian local ring with prime characteristic p>0 and perfect residue field. Let $R^{1/p^{e}}$ be the ring of p e -th roots of elements of R for e???, and let a e denote the maximal rank of a free R-module appearing in a direct sum decomposition of $R^{1/p^{e}}$ . We show the existence of the limit $s(R) := \lim_{e \to\infty} \frac{a_{e}}{p^{ed}}$ , called the F-signature of R. This invariant??which can be extended to all local rings in prime characteristic??was first formally defined by C. Huneke and G. Leuschke (in Math. Ann. 324(2), 391?C404, 2002) and has previously been shown to exist only in special cases. The proof of our main result is based on the development of certain uniform Hilbert-Kunz estimates of independent interest. Additionally, we analyze the behavior of the F-signature under finite ring extensions and recover explicit formulae for the F-signatures of arbitrary finite quotient singularities.  相似文献   

17.
We apply the discrete version of Calderón??s reproducing formula and Littlewood?CPaley theory with weights to establish the $H^{p}_{w} \to H^{p}_{w}$ (0<p<??) and $H^{p}_{w}\to L^{p}_{w}$ (0<p??1) boundedness for singular integral operators and derive some explicit bounds for the operator norms of singular integrals acting on these weighted Hardy spaces when we only assume w??A ??. The bounds will be expressed in terms of the A q constant of w if q>q w =inf?{s:w??A s }. Our results can be regarded as a natural extension of the results about the growth of the A p constant of singular integral operators on classical weighted Lebesgue spaces $L^{p}_{w}$ in Hytonen et al. (arXiv:1006.2530, 2010; arXiv:0911.0713, 2009), Lerner (Ill.?J.?Math. 52:653?C666, 2008; Proc. Am. Math. Soc. 136(8):2829?C2833, 2008), Lerner et?al. (Int.?Math. Res. Notes 2008:rnm 126, 2008; Math. Res. Lett. 16:149?C156, 2009), Lacey et?al. (arXiv:0905.3839v2, 2009; arXiv:0906.1941, 2009), Petermichl (Am. J. Math. 129(5):1355?C1375, 2007; Proc. Am. Math. Soc. 136(4):1237?C1249, 2008), and Petermichl and Volberg (Duke Math. J. 112(2):281?C305, 2002). Our main result is stated in Theorem?1.1. Our method avoids the atomic decomposition which was usually used in proving boundedness of singular integral operators on Hardy spaces.  相似文献   

18.
Under the assumption that δ is a Woodin cardinal and GCH holds, I show that if F is any class function from the regular cardinals to the cardinals such that (1) ${\kappa < {\rm cf}(F(\kappa))}$ , (2) ${\kappa < \lambda}$ implies ${F(\kappa) \leq F(\lambda)}$ , and (3) δ is closed under F, then there is a cofinality-preserving forcing extension in which 2 γ = F(γ) for each regular cardinal γ < δ, and in which δ remains Woodin. Unlike the analogous results for supercompact cardinals [Menas in Trans Am Math Soc 223:61–91, (1976)] and strong cardinals [Friedman and Honzik in Ann Pure Appl Logic 154(3):191–208, (2008)], there is no requirement that the function F be locally definable. I deduce a global version of the above result: Assuming GCH, if F is a function satisfying (1) and (2) above, and C is a class of Woodin cardinals, each of which is closed under F, then there is a cofinality-preserving forcing extension in which 2 γ = F(γ) for all regular cardinals γ and each cardinal in C remains Woodin.  相似文献   

19.
It is known (“mathematical folklore”) that, to every function defined on [1,2], there exists a solution of f(2x) = 2f(x) on ]0,∞[ of which the given function is a restriction to [1,2]. With a little care in the definition on [1,2], with still a lot of arbitrariness left, the resulting solution will be continuous, even C on ]0,∞[ (a behaviour markedly different from that of the Cauchy equation f(x + y) = f(x) + f(y), which has f(x) = cx as only continuous solution on ]0,∞[, even though, with y = x, it degenerates into the above equation). If 0 is added to the domain and we choose the “arbitrary function” bounded on [1,2[, then the solution will even be continuous (from the right) at 0. However, if f is supposed to be differentiable at 0 (from the right), then f(x) = cx is the only solution on [0,∞[. p In this paper we present similar and further results concerning general, Cn (n ≤ ∞), analytic, locally monotonie or γ-th order convex solutions of the somewhat more general equation f(kx) = kγf(x) (k ≠ 1 a positive, γ a real constant), which seems to be of importance in meterology. Some of the results are not quite what one expects.  相似文献   

20.
Syntactic Rings     
If the state set and the input set of an automaton are Ω-groups then near-rings are useful in the study of automata (see [5]). These near-rings, called syntactic near-rings, consist of mappings from the state set Q of the automaton into itself. If, as is often the case, Q bears the structure of a module, then the zerosymmetric part N0(A) of syntactic near-rings is a commutative ring with identity. If N0(A) is a syntactic ring then its ideals are useful for determining reachability in automata (see [1] or [2]). In this paper we investigate syntactic rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号