首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Though generally agreed that the symmetry energy plays a dramatic role in determining the structure of neutron stars and the evolution of core-collapsing supernovae, little is known in what concerns its value away from normal nuclear matter density and, even more important, the correct definition of this quantity in the case of unhomogeneous matter. Indeed, nuclear matter traditionally addressed by mean-field models is uniform while clusters are known to exist in the dilute baryonic matter which constitutes the main component of compact objects outer shells. In the present work we investigate the meaning of symmetry energy in the case of clusterized systems and the sensitivity of the proto-neutron star composition and equation of state to the effective interaction. To this aim an improved Nuclear Statistical Equilibrium (NSE) model is developed, where the same effective interaction is consistently used to determine the clusters and unbound particles energy functionals in the self-consistent mean-field approximation. In the same framework, in-medium modifications to the cluster energies due to the presence of the nuclear gas are evaluated. We show that the excluded volume effect does not exhaust the in-medium effects and an extra isospin and density-dependent energy shift has to be considered to consistently determine the composition of subsaturation stellar matter. The symmetry energy of diluted matter is seen to depend on the isovector properties of the effective interaction, but its behavior with density and its quantitative value are strongly modified by clusterization.  相似文献   

2.
The nuclear symmetry energy is intimately connected with nuclear astrophysics. This contribution focuses on the estimation of the symmetry energy from experiment and how it is related to the structure of neutron stars. The most important connection is between the radii of neutron stars and the pressure of neutron star matter in the vicinity of the nuclear saturation density ns. This pressure is essentially controlled by the nuclear symmetry energy parameters Sv and L , the first two coefficients of a Taylor expansion of the symmetry energy around ns. We discuss constraints on these parameters that can be found from nuclear experiments. We demonstrate that these constraints are largely model-independent by deriving them qualitatively from a simple nuclear model. We also summarize how recent theoretical studies of pure neutron matter can reinforce these constraints. To date, several different astrophysical measurements of neutron star radii have been attempted. Attention is focused on photospheric radius expansion bursts and on thermal emissions from quiescent low-mass X-ray binaries. While none of these observations can, at the present time, determine individual neutron star radii to better than 20% accuracy, the body of observations can be used with Bayesian techniques to effectively constrain them to higher precision. These techniques invert the structure equations and obtain estimates of the pressure-density relation of neutron star matter, not only near ns, but up to the highest densities found in neutron star interiors. The estimates we derive for neutron star radii are in concordance with predictions from nuclear experiment and theory.  相似文献   

3.
Within a relativistic mean-field model with nonlinear isoscalar–isovector coupling, we explore the possibility of constraining the density dependence of nuclear symmetry energy from a systematic study of the neutron skin thickness of finite nuclei and neutron star properties. We find the present skin data supports a rather stiff symmetry energy at subsaturation densities that corresponds to a soft symmetry energy at supranormal densities. Correlation between the skin of 208Pb and the neutron star masses and radii with kaon condensation has been studied. We find that 208Pb skin estimate suggest star radii that reveals considerable model dependence. Thus precise measurements of neutron star radii in conjunction with skin thickness of heavy nuclei could provide significant constraint on the density dependence of symmetry energy.  相似文献   

4.
5.
Using a phenomenological form of the equation of state of neutron matter near the saturation density which has been previously demonstrated to be a good characterization of quantum Monte Carlo simulations, we show that currently available neutron star mass and radius measurements provide a significant constraint on the equation of state of neutron matter. At higher densities we model the equation of state by using polytropes and a quark matter model. We show that observations offer an important constraint on the strength of the three-body force in neutron matter, and thus some theoretical models of the three-body force may be ruled out by currently available astrophysical data. In addition, we obtain an estimate of the symmetry energy of nuclear matter and its slope that can be directly compared to the experiment and other theoretical calculations.  相似文献   

6.
《Nuclear Physics A》1998,633(2):391-405
We investigate the problem of defects in the crust of a neutron star and their possible astrophysical consequences. We consider point defects (impurities, lattice vacancies) and microcrystalline structures resulting from non-equilibrium processes (nuclear condensation, ionic migration, crystallization, etc.) as well as from equilibrium configurations at finite temperature. Our findings suggest that the presence of impurities is likely while vacancies, microcrystals or a glassy state are probably absent.  相似文献   

7.
文德华  付宏洋  陈伟 《中国物理 B》2011,20(6):60402-060402
The imprints of the neutron star crust on the gravitational waves emitted from the axial w-modes are investigated by adopting two typical equations of state (EOSs) of the crust matter and two representative EOSs of the core matter. It is shown that there is a significant effect of the crust EOSs on the gravitational waves from the axial w-mode oscillation for a stiff core EOS.  相似文献   

8.
Constraints on the equation of state (EoS) for symmetric matter (equal neutron and proton numbers) have been extracted from energetic collisions of heavy ions over a range of energies. Collisions of neutron-deficient and neutron-rich heavy ions now provide initial constraints on the EoS of neutron-rich matter at subsaturation densities from isospin diffusions and neutron proton ratios. This article reviews the experimental constraints on the density dependence of symmetry energy at subsaturation density.  相似文献   

9.
10.
11.
A semi-microscopic self-consistent quantum approach developed recently to describe the inner-crust structure of neutron stars within the Wigner-Seitz (WS) method with the explicit inclusion of neutron and proton pairing correlations is further developed. In this approach, the generalized energy functional is used which contains the anomalous term describing the pairing. It is constructed by matching the realistic phenomenological functional by Fayans et al. for describing the nuclear-type cluster in the center of the WS cell with the one calculated microscopically for neutron matter. Previously, the anomalous part of the latter was calculated within the BCS approximation. In this work corrections to the BCS theory which are known from the many-body theory of pairing in neutron matter are included into the energy functional in an approximate way. These modifications have a sizable influence on the equilibrium configuration of the inner crust, i.e. on the proton charge Z and the radius R c of the WS cell. The effects are quite significant in the region where the neutron pairing gap is larger.  相似文献   

12.
Yi-Yan Yang 《中国物理 B》2021,30(6):68703-068703
So far among the nineteen pairs of detected double neutron star (DNS) systems, it is a usual fact that the first-born recycled pulsar is detected, however the youngest DNS system PSR J1906+0746, with the characteristic age of 113 kyr, is one of the three detected DNS as a non-recycled and second-born NS, which is believed to be formed by an electron capture or a low energy ultra-stripped iron core-collapse supernova (SN) explosion. The SN remnant around PSR J1906+0746 is too dim to be observed by optical telescopes, then its x-ray flux limit has been given by Chandra. A reference pulsar PSR J1509-5850 with the young characteristic age of 154 kyr was chosen as an object of comparison, which has an SN remnant observed by Chandra and is believed to be formed by iron core SN explosion. We impose a restriction on the maximum kinetic energy of electron-capture (EC) SN explosion that induces the formation of PSR J1906+0746. The estimated result is (4-8)×1050 erg (1 erg=10-7 J), which is consistent with that of the published simulations of the EC process, i.e., a lower value than that of the conventional iron core SN explosion of (1-2)×1051 erg. As suggested, EC process for NS formation is pertained to the subluminous type Ic SN by the helium star with ONeMg core, thus for the first time we derived the kinetic energy of EC SN explosion of DNS, which may be reconciled with the recent observation of type Ic SN 2014ft with kinetic energy of 2×1050 erg.  相似文献   

13.
《Nuclear Physics A》2005,747(1):109-128
The outer layers of a neutron star are supposed to be formed of a solid Coulomb lattice of neutron rich nuclei. At densities above neutron drip density (about one thousandth of nuclear saturation density), this lattice is immersed in a neutron fluid. Bragg scattering of those dripped neutrons by the nuclei which has been usually neglected is investigated, within a simple mean field model with Bloch type boundary conditions. The main purpose of this work is to provide some estimates for the entrainment coefficients, as required for hydrodynamical two fluid simulations of neutron star crust [nucl-th/0402057, astro-ph/0408083], which relate the momentum of one fluid to the particle currents of the other two fluids [Sov. Phys. JETP 42 (1976) 164]. The implications for the equilibrium neutron star crust structure are also briefly discussed.  相似文献   

14.
A self-consistent quantum approach to describe the inner crust structure of neutron stars is developed, within the Wigner–Seitz approximation. It is based on the generalized energy functional method involving explicitly neutron and proton pairing correlations. The energy functional is constructed by matching the realistic phenomenological functional by Fayans et al. for describing the nuclear-type cluster in the center of the Wigner–Seitz cell with the one calculated microscopically for neutron matter. It is shown that the neutron and proton superfluidity influences significantly the ground state structure of the inner crust.  相似文献   

15.
We show that microscopic calculations based on chiral effective field theory interactions constrain the properties of neutron-rich matter below nuclear densities to a much higher degree than is reflected in commonly used equations of state. Combined with observed neutron star masses, our results lead to a radius R=9.7-13.9 km for a 1.4M⊙ star, where the theoretical range is due, in about equal amounts, to uncertainties in many-body forces and to the extrapolation to high densities.  相似文献   

16.
In this paper,we include the density dependence behavior of the symmetry energy in the improved quark mass density dependent (IQMDD) model.Under the mean field approximation,this model is applied to investigate neutron star matter and neutron stars successfully.Effects of the density dependence of the symmetry energy on neutron stars are described.  相似文献   

17.
刘晓进  吴琛  任中洲 《中国物理 C》2010,34(11):1709-1713
In this paper,we include the density dependence behavior of the symmetry energy in the improved quark mass density dependent (IQMDD) model.Under the mean field approximation,this model is applied to investigate neutron star matter and neutron stars successfully.Effects of the density dependence of the symmetry energy on neutron stars are described.  相似文献   

18.
We used the cluster structure properties of the 212Po to estimate the neutron skin thickness of 208Pb.For this purpose,we considered two important components:(a)alpha decay is a low energy phenomenon;therefore,one can expect that the mean-field,which can explain the ground state properties of 212Po,does not change during the alpha decay process.(b)212Po has a high alpha cluster-like structure,two protons and two neutrons outside its core nucleus with a double magic closed-shell,and the cluster model is a powerful formalism for the estimation of alpha decay preformation factor of such nuclei.The slope of the symmetry energy of 208Pb is estimated to be 75±25 MeV within the selected same mean-fields and Skyrme forces,which can simultaneously satisfy the ground-state properties of parent and daughter nuclei,as their neutron skin thicknesses are consistent with experimental data.  相似文献   

19.
We model neutrino emission from a newly born neutron star subsequent to a supernova explosion to study its sensitivity to the equation of state, neutrino opacities, and convective instabilities at high baryon density. We find the time period and spatial extent over which convection operates is sensitive to the behavior of the nuclear symmetry energy at and above nuclear density. When convection ends within the protoneutron star, there is a break in the predicted neutrino emission that may be clearly observable.  相似文献   

20.
Within the Wigner-Seitz approximation, a self-consistent fully quantum-mechanical calculation of the structure of the inner crust of a neutron star is performed over a wide range of densities with allowance for superfluidity effects. Within the approach used, the Wigner-Seitz cell consists of a nuclear-like cluster surrounded by a nearly uniform neutron gas. An effective energy functional is constructed by matching, at the cluster surface, the realistic phenomenological nuclear functional for the cluster due to S. A. Fayans and his coauthors and the energy functional calculated microscopically for neutron matter. The microscopic component of the functional is calculated within the Brueckner method by using the v18 Argonne interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号