首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Physics letters. A》1997,235(1):71-75
Relativistic stationary shock waves in an ideal conducting fluid are studied for the general equation of state. We use small viscosity arguments to obtain a criterion that selects physically admissible shock transitions without any supposition about convexity of the Poisson adiabats. The relations between the magnetosound speeds and the speed of the shock obtained as a consequence of this criterion reveal specific differences between relativistic considerations versus classical ones.  相似文献   

2.
The general relativistic barometric formulas of a perfect charged relativistic ther modynamical fluid with constant magnetic permeability and infinite conductivity are deduced if the space-time, in which this fluid is moving, has two Killing vector fields: the first collinear to the 4-velocity with the second one proportional to the magnetic field.  相似文献   

3.
It is shown that if the flow of a plasma coupled to a frozen-in magnetic field is isometric, the velocity field, the vorticity tensor and the four-vector magnetic field are invariant under the group of motions. A generalization of Ferraro's theorem of isorotation and of the Bernoulli's theorem for force-free fluids is found.  相似文献   

4.
We consider the problem of cosmic-ray generation through the surfing acceleration of charged particles in relativistic magnetosonic shock waves (the branch of fast magnetic sound) propagating in magnetized space plasmas. The dependence of the particle surfing acceleration efficiency on the angle θ Bn between the normal to the shock front plane and the magnetic field vector in the plasma upstream of the shock is analyzed in detail. We show that for angles satisfying the condition χ = βΓ tan θ Bn ⩾ 1, where β = U/c, Γ = (1 − β)2 −1/2, U is the shock velocity, and c is the speed of light, the particles can theoretically be accelerated through surfing for an unlimited time and can gain an unlimited energy. For angles satisfying the condition χ < 1, the kinetic energy ℰ of the particles is limited by ℰ = 2mc 2χ2/(1 − χ2) (m is the particle rest mass). Our main conclusion is that the generation of cosmic rays through the surfing acceleration of particles in the front of a relativistic shock wave for Γ ≫ 1 is also efficient when the angle θ Bn is very small, i.e., it differs significantly from a right angle. Estimates for the energies of particles accelerated through surfing in relativistic jets are provided.  相似文献   

5.
Asif Shah 《Physics letters. A》2009,373(45):4164-4168
The Korteweg-de Vries-Burger (KdVB) equation is derived for ion acoustic shock waves in a weakly relativistic electron-positron-ion plasma. Electrons, positrons are considered isothermal and ions are relativistic. The travelling wave solution has been acquired by employing the tangent hyperbolic method. The vivid display of the graphical results is presented and analyzed. It is observed that amplitude and steepness of the shock wave decrease with increase of the relativistic streaming factor, the positron concentration and they increase with the increase of the coefficient of kinematic viscosity and vice versa. It is determined that at low temperature the shock wave propagates, whereas at very high temperature the solitary wave propagates in the system. The results may have relevance in astrophysical plasmas as well as in inertial confinement fusion plasmas.  相似文献   

6.
The present work is intended to gain a fruitful insight into the understanding of the formations of magneto-vortex configurations and their role in the physical processes of mutual exchange of energies associated with fluid’s motion and the magnetic fields in an axisymmetric stationary hydromagnetic system subject to strong gravitational field (e.g., neutron star/magnetar). It is found that the vorticity flux vector field associated with vorticity 2-form is a linear combination of fluid’s vorticity vector and of magnetic vorticity vector. The vorticity flux vector obeys Helmholtz’s flux conservation. The energy equation associated with the vorticity flux vector field is deduced. It is shown that the mechanical rotation of vorticity flux surfaces contributes to the formation of vorticity flux vector field. The dynamo action for the generation of toroidal components of vorticity flux vector field is described in the presence of meridional circulations. It is shown that the stretching of twisting magnetic lines due to differential rotation leads to the breakdown of gravitational isorotation in the absence of meridional circulations. An explicit expression consists of rotation of vorticity flux surface, energy and angular momentum per baryon for the fluid-magnetic helicity current vector is obtained. The conservation of fluid-magnetic helicity is demonstrated. It is found that the fluid-magnetic helicity displays the energy spectrum arising due to the interaction between the mechanical rotation of vorticity flux surfaces and the fluid’s motion obeying Euler’s equations. The dissipation of a linear combination of modified fluid helicity and magnetic twist is shown to occur due to coupled effect of frame dragging and meridional circulation. It is found that the growing twist of magnetic lines causes the dissipation of modified fluid helicity in the absence of meridional circulations.  相似文献   

7.
The uniform motion of the center of mass of a charged, conducting fluid, in the presence of an electromagnetic field, is derived in the first post-Newtonian approximation of general relativity. Also the source's far field metric tensor is determined, and it is expressed in terms of parameters known as three-dimensional volume integrals over its interior. These results for the above system permit the physical identification, to post-Newtonian accuracy, of the integration constants and the coordinate systems involved in the Schwarzschild and the Kerr metric tensors.  相似文献   

8.
9.
A shock wave in a self-gravitating fluid obeying the equation of state: pressure equal to energy density is shown to travel with the velocity of light in a space-time determined by the Einstein field equations. The jump conditions that must be satisfied by the hydrodynamic variables are derived and discussed as are those that must be satisfied by the metric tensor and its derivatives. The latter conditions are obtained by using a variational principle.  相似文献   

10.
Different forms of criteria for the existence and stability of relativistic shock waves are compared. In case of a single-valued shock adiabat expressed as a function of pressure the requirement of the existence of a shock viscous profile is shown to be most restrictive. This criterion overlaps evolutionarity conditions, the entropy criterion and corrugation stability. The relativistic criterion of the spontaneous radiation of sound is proved to be equivalent to the condition of shock quasi-instability with respect to three-wave branching. The results are qualitatively analogous to those of a non-relativistic consideration.  相似文献   

11.
12.
13.
14.
Simulation of compression wave generation and evolution at the disk target was performed for the case of explosive-type boiling of coolant; the boiling is initiated by endwall rupture of a high-pressure pipeline. The calculations were performed for shock wave amplitude at different times and modes of pipe rupture. The simulated pressure of a target-reflected shock wave is different from the theoretical value for ideal gas; this discrepancy between simulation and theory becomes lower at higher distances of flow from the nozzle exit. Comparative simulation study was performed for flow of two-phase coolant with account for slip flow effect and for different sizes of droplets. Simulation gave the limiting droplet size when the single-velocity homogeneous flow model is valid, i.e., the slip flow effect is insignificant.  相似文献   

15.
The propagation of linearly polarized large-amplitude electromagnetic waves in relativistic plasmas is studied in the framework of the Akhiezer-Polovin-model. Different forms of the basic equations are reviewed and important solutions are presented for small and critical plasma densities. The well-known periodic solutions are generalized to quasiperiodic solutions taking account of additional electrostatic oscillations.  相似文献   

16.
17.
By applying a reductive perturbation technique to the basic system of equations governing the plasma dynamics, a modified Korteweg-de Vries (K-dV) equation has been derived in relativistic plasma that includes cold ions and warm nonisothermal electrons. By reducing the effect of nonisothermality, the authors demonstrate the modification of the K-dV equation into different forms which show how to link the behavior of ion-acoustic waves in nonisothermal plasmas with that in isothermal plasmas  相似文献   

18.
We present relativistic elasticity as a scalar field theory. We apply it to rigid bodies, i.e., relativistic bodies with a nonlinear elastic law and a definite longitudinal wave velocity l equal to the light velocity,c. We obtain the transverse wave equation with a definite velocity t , and the relation between l , t , and the Poisson coefficient is the classical one. This is an indication that we have the relativistic extension of a classical Hooke elastic law.  相似文献   

19.
Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing.  相似文献   

20.
Patrick Das Gupta 《Pramana》2004,63(4):877-882
Discussions related to gravitational wave experiments viz. LIGO and LISA as well as to observations of supermassive black holes dominated the workshop sessions on gravitational waves and relativistic astrophysics in the ICGC-2004. A summary of seven papers that were presented in these workshop sessions has been provided in this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号