首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strain interface jump conditions are derived in two and three dimensions for bonded and slipping inclusions, as well as the Cesàro type integral for global compatibility of a slipping inclusion. No Cesàro integral is needed for a bonded inclusion. The geometric nature of a Volterra dislocation surrounding a slipping inclusion is determined.  相似文献   

2.
Material structure of bodies that is usually assumed a-priory in continuum mechanics is constructed on the basis of a balance of a given extensive property on spacetime. Body points are identified with worldlines—the integral lines of the flux of the property. The geometric setting assumes that spacetime has only the structure of a differentiable manifold and no particular frame is assumed to be given.  相似文献   

3.
The variational approach for boundary value problems related to non-linear materials is presented. The approach is based on the introduced integral convexity argument and monotone operator theory. This permits to obtain an existence and uniqueness of the solution within the range of Kachanov's theory, under natural and general conditions. The introduced argument allows to prove monotonicity of the sequence of potentials on the sequence of iterations. As a result monotonicity of the iteration process for elastoplastic problems is obtained. Theoretical results are illustrated by computational experiments.  相似文献   

4.
This paper addresses a general analytical method for investigating the two-dimensional distributions of stresses set up in a rectangular plate by a load applied along its sides in any arbitrary manner. Proposed independently by Mathieu (1890), Inglis (1921) and Pickett (1944), and later named the superposition method, it has been applied with success to the study of distribution of stresses inside a rectangle. The object of this paper is to prove the advantages of that approach when studying a stress field near the boundaries, including specific cases of discontinuous and concentrated normal and shear loadings. The method is illustrated by several numerical examples, the rapidity of convergence and the accuracy of results are investigated. The distribution of stresses along some typical lines in the plate are computed and shown graphically.  相似文献   

5.
Displacement potentials in linear static elasticity consist of three functions which can be regarded as the three components of a vector, e.g., the Galerkin vector. This research note gives an explanation as to why the biharmonic equations govern these functions in isotropic elasticity as opposed to the sixth-order partial differential equations that govern them in anisotropic elasticity. This note also shows that the Eshelby solution in two-dimensional anisotropic elasticity can be derived from the method of displacement potentials.  相似文献   

6.
In the context of the direct or Cosserat theory of rods developed by Green, Naghdi and several of their co-workers, this paper is concerned with the development of a theory of small deformations which are superposed on large deformations. The resulting theory is properly invariant under all superposed rigid body motions. Furthermore, it is also valid for elastic rods which are subject to kinematical constraints, and it specializes to a linear theory of an elastic rod which is invariant under superposed rigid body motions. The construction of these theories is based on the method developed by Casey & Naghdi [1] who established similar theories for unconstrained nonpolar elastic bodies.  相似文献   

7.
Necessary and sufficient conditions for the strong ellipticity of isotropic hyperelastic materials were first given by Knowles and Sternberg [3,4] by means of a lengthy calculation. Since then Aubert and Tahraoui [1] have shown the necessity of these conditions and simplified one of them using a different but still complicated method. The purpose of this note is to show how the conditions can be derived in a very simple way.  相似文献   

8.
Levinson's solution for the problem of a simply supported rectangular plate of arbitrary thickness by normal surface loads is extended to the transversely isotropic and layered case. The exact closed form solution is obtained by using the propagator matrix method in a system of vector functions. As a special case of the layered medium, the normal displacement or deflection of a homogeneous plate of arbitrary thickness by normal surface loads is also given. It is shown that it approaches the classical solution for the transversely isotropic thin plate as the thickness approaches zero on the one hand, and on the other hand reduces to the thick plate expression as given by Levinson when the medium is isotropic.  相似文献   

9.
The propagator matrix method is used in this paper to study the vibration of a transversely isotropic, simply supported and layered rectangular plate. A new system of vector functions is constructed to deal with general surface loading, and general solutions and layer matrices of exact closed form are obtained in this system. The particular solution for forced vibration, and the characteristic equations for free vibration of various surface conditions are then obtained by simple multiplication of layer matrices. These results are presented in such a way that the dilatational and distortional modes of vibration are separated. As a special case of the layered plate, results for the corresponding homogeneous thick plate are also derived. They are presented in a very simple form, and contain the previous results for the static transversely isotropic and the dynamic isotropic plates.  相似文献   

10.
An unbounded isotropic compressible neo-Hookean solid is initially in equilibrium under uniform tensile (possibly large) pre-stress. In one case, plane strain conditions generate slit crack growth at a constant sub-critical rate; in the other, axial symmetry produces penny-shaped crack growth. The procedure of superposing infinitesimal deformations upon those that are large is carried out in terms of tractable exact full-field solutions.These solutions are examined apart from a specific fracture mechanics model, nevertheless, they show that pre-stress induces, in addition to the expected anisotropy, a critical value above which a negative Poisson effect occurs. It is also found that dilatational, rotational and Rayleigh wave speeds decrease, and that the decrease is greater for the plane strain state associated with slit crack growth than for the axially symmetric state of the penny-shaped crack.Dynamic stress intensity factors are also extracted, and found to fall below those for a linear isotropic solid at the same pre-stress and crack growth rate. Moreover, the range of growth rates for sub-critical crack propagation is also decreased.  相似文献   

11.
We seek a solution for a piezoelectric cylinder acted on the end faces by applied tractions and charges, under the hypothesis that both the stress and electric displacement fields depend linearly on the axial coordinate. The analysis, restricted to monoclinic materials of crystallographic class 2, leads to an explicit solution in terms of the strain and electric fields, which depend on the stress and charge resultants and on two scalar functions determined by the solution of a plane piezoelectric problem.  相似文献   

12.
Cavitation for incompressible anisotropic nonlinearly elastic spheres   总被引:4,自引:0,他引:4  
In this paper, the effect ofmaterial anisotropy on void nucleation and growth inincompressible nonlinearly elastic solids is examined. A bifurcation problem is considered for a solid sphere composed of an incompressible homogeneous nonlinearly elastic material which is transversely isotropic about the radial direction. Under a uniform radial tensile dead-load, a branch of radially symmetric configurations involving a traction-free internal cavity bifurcates from the undeformed configuration at sufficiently large loads. Closed form analytic solutions are obtained for a specific material model, which may be viewed as a generalization of the classic neo-Hookean model to anisotropic materials. In contrast to the situation for a neo-Hookean sphere, bifurcation here may occur locally either to the right (supercritical) or to the left (subcritical), depending on the degree of anisotropy. In the latter case, the cavity has finite radius on first appearance. Such a discontinuous change in stable equilibrium configurations is reminiscent of the snap-through buckling phenomenon of structural mechanics. Such dramatic cavitational instabilities were previously encountered by Antman and Negrón-Marrero [3] for anisotropiccompressible solids and by Horgan and Pence [17] forcomposite incompressible spheres.  相似文献   

13.
In this paper we develop a simple micromechanical model of a prestressed polycrystalline aggregate, in which the texture-induced and stress-induced anisotropies of the aggregate are precisely defined; here the word texture always refers to the texture of the aggregate at the given prestressed configuration, not to that of a perhaps fictitious natural state of the aggregate. We use this model to derive, for a prestressed orthotropic aggregate of cubic crystallites, a birefringence formula which shows explicitly the effects of the orthotropic texture on the acoustoelastic coefficients. From this formula we observe that, generally speaking, we cannot separate the total birefringence into two distinct parts, one reflecting purely the influence of stress on the birefringence, and the other encompassing all the effects of texture. The same formula, on the other hand, provides for each material specific quantitative criteria under which the separation of stress-induced and texture-induced birefringence would become meaningful in an approximate sense.  相似文献   

14.
We seek for a solution of Saint-Venant's problem for inhomogeneous and anisotropic materials under the assumptions, introduced by Voigt, that the stress is either constant along the axis of the cylinder or depends linearly on the axial coordinate. We first prove the uniqueness of the solution in terms of resultants, then we exhibit an explicit formula for such a solution; we show finally how Clebsch's hypothesis, that the stress vector on axial planes is parallel to the axis, is compatible with Voigt's hypotheses provided that the symmetry group of the material comprising the cylinder contains the reflections on the cross-section.  相似文献   

15.
It has been known for some time that certain radial anisotropies in some linear elasticity problems can give rise to stress singularities which are absent in the corresponding isotropic problems. Recently related issues were examined by other authors in the context of plane strain axisymmetric deformations of a hollow circular cylindrically anisotropic linearly elastic cylinder under uniform external pressure, an anisotropic analog of the classic isotropic Lamé problem. In the isotropic case, as the external radius increases, the stresses rapidly approach those for a traction-free cavity in an infinite medium under remotely applied uniform compression. However, it has been shown that this does not occur when the cylinder is even slightly anisotropic. In this paper, we provide further elaboration on these issues. For the externally pressurized hollow cylinder (or disk), it is shown that for radially orthotropic materials, the maximum hoop stress occurs always on the inner boundary (as in the isotropic case) but that the stress concentration factor is infinite. For circumferentially orthotropic materials, if the tube is sufficiently thin, the maximum hoop stress always occurs on the inner boundary whereas for sufficiently thick tubes, the maximum hoop stress occurs at the outer boundary. For the case of an internally pressurized tube, the anisotropic problem does not give rise to such radical differences in stress behavior from the isotropic problem. Such differences do, however, arise in the problem of an anisotropic disk, in plane stress, rotating at a constant angular velocity about its center, as well as in the three-dimensional problem governing radially symmetric deformations of anisotropic externally pressurized hollow spheres. The anisotropies of concern here do arise in technological applications such as the processing of fiber composites as well as the casting of metals.  相似文献   

16.
It is known that the Cauchy stress tensor T is a pure shear when trT = 0. An elementary derivation is given for a coordinate system such that, when referred to this coordinate system, the diagonal elements of T vanish while the off-diagonal elements τ 1, τ 2, τ 3, are the pure shears. The structure of τ i (i = 1, 2, 3) depends on one non-dimensional parameter q = 54(detT)2 / [tr(T 2)]3, 0 ≤ q ≤ 1. When q = 0, one of the three τ i vanishes. A coordinate system can be chosen such that the remaining two have the same magnitude or one of the remaining two also vanishes. When q = 1, all three τ i have the same magnitude. However, there is a one-parameter family of coordinate systems that gives the same three τ i . For q ≠ 0 or 1, none of the three τ i vanishes and the three τ i in general have different magnitudes. Nevertheless, a coordinate system can be chosen such that two of the three τ i have the same magnitude. Professor Emeritus of University of Illinois at Chicago and Consulting Professor of Stanford University.  相似文献   

17.
In the context of the linear theory of thermoelasticity without energy dissipation for homogeneous and isotropic materials, the uniqueness of solution of a natural initial, mixed boundary value problem is proved. The proof depends on an equation of energy balance formulated entirely in terms of temperature and velocity fields.  相似文献   

18.
The conditions for the strong ellipticity of the equilibrium equations of compressible, isotropic, nonlinearly elastic solids (established by Simpson and Spector [1]) are expressed in terms of the stored-energy function regarded as a function of the principal stretches. The applicability of this reformulation is illustrated with the help of two specific examples.  相似文献   

19.
A theory for the lateral spreading of a beam of nonlinear surface acoustic waves across the surface of an arbitrary, homogeneous, elastic half-space is developed. The resulting evolution equation generalizes that obtained for uni-directional waves by replacing an ordinary derivative by a diffusion operator of Schrödinger type. The coefficients arising in the evolution equation are related to partial derivatives of the dispersion relation for linearized surface waves on the half space. Details are given for isotropic materials and for two special cases of beams travelling along axes of high elastic symmetry.  相似文献   

20.
A one-dimensional model of a linearly elastic thin rod is deduced from three-dimensional elasticity by regarding the Kirchhoff hypotheses as internal constraints prevailing in a three-dimensional tubular region. It follows from such an assumption that the displacement and the strain fields are linear in the cross-sectional coordinates. A constitutive relation that exhibits the maximal symmetry compatible with the assumed constraints is chosen and the equilibrium equations in terms of displacements are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号