首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
SASEFEL是获得短波长X射线激光的最佳途径,SASEFEL的理论和实验研究是当前FEL研究的热点.本文利用北京大学超导加速器装置提供的电子束,通过解析理论和3D模型的数值模拟方法得到了实现SASEFEL的扭摆器的优化参数,并讨论了电子束的束流品质参数对SASEFEL的饱和长度和功率的影响,对加速器的设计和调试有重要的参考意义.  相似文献   

2.
We report on the first time-resolved phase measurement on self-amplified spontaneous emission (SASE) free-electron laser (FEL) pulses. We observed that the spikes in the output of such free-electron laser pulses have an intrinsic positive chirp. We also observed that the energy chirp in the electron bunch mapped directly into the FEL output. Under certain conditions, the two chirps cancel each other. The experimental result was compared with simulations and interpreted with SASE theory.  相似文献   

3.
磁压缩对高频稳定性的要求   总被引:1,自引:0,他引:1       下载免费PDF全文
 曲柄式磁压缩系统是北京大学SASE自由电子激光装置中非常重要的部分,通过其对电子束团的压缩为扭摆器提供高流强、短脉冲的电子束,使电子束在扭摆器内较短的距离实现饱和出光。曲柄式磁压缩需要利用偏离高频峰位的加速相位使得电子束产生能量-位置关联,主要讨论高频相位抖动与能量-位置关联的相互关系,高频相位抖动使得束团的能量-位置关联不同,即束团内电子能量随位置分布不同。进而研究其对磁压缩性能的影响,即能量-位置关联不一样会导致磁压缩得到的束团长度出现涨落。  相似文献   

4.
A new design for a single pass X-ray Self-Amplified Spontaneous Emission (SASE) FEL is proposed. The scheme consists of two undulators and an X-ray monochromator located between them. The first stage of the FEL amplifier operates in the SASE linear regime. After the exit of the first undulator the electron bunch is guided through a non-isochronous bypass and the X-ray beam enters the monochromator. The main function of the bypass is to suppress the modulation of the electron beam induced in the first undulator. This is possible because of the finite value of the natural energy spread in the beam. At the entrance to the second undulator the radiation power from the monochromator dominates significantly over the shot noise and the residual electron bunching. As a result the second stage of the FEL amplifier operates in the steady-state regime when the input signal bandwidth is small with respect to that of the FEL amplifier. Integral losses of the radiation power in the monochromator are relatively small because grazing incidence optics can be used. The proposed scheme is illustrated for the example of the 6 nm option SASE FEL at the TESLA Test Facility under construction at DESY. As shown in this paper the spectral bandwidth of such a two-stage SASE FEL (Δλ/λ 5 × 10−5) is close to the limit defined by the finite duration of the radiation pulse. The average brilliance is equal to 7 × 1024 photons/(s × mrad2 × mm2 × 0.1% bandw.) which is by two orders of magnitude higher than the value which could be reached by the conventional SASE FEL. The monochromatization of the radiation is performed at a low level of radiation power (about 500 times less than the saturation level) which allows one to use conventional X-ray optical elements (grazing incidence grating and mirrors) for the monochromator design.  相似文献   

5.
We propose and analyze a regenerative-amplifier free-electron laser (FEL) to produce fully coherent, hard x-ray pulses. The method makes use of narrow-bandwidth Bragg crystals to form an x-ray feedback loop around a relatively short undulator. Self-amplified spontaneous emission (SASE) from the leading electron bunch in a bunch train is spectrally filtered by the Bragg reflectors and is brought back to the beginning of the undulator to interact repeatedly with subsequent bunches in the bunch train. The FEL interaction with these short bunches regeneratively amplifies the radiation intensity and broadens its spectrum, allowing for effective transmission of the x rays outside the crystal bandwidth. The spectral brightness of these x-ray pulses is about 2 to 3 orders of magnitude higher than that from a single-pass SASE FEL.  相似文献   

6.
A simple analysis is given for the optimum length of undulator in a self-seeding free electron laser(FEL).The obtained relations show the correlation between the undulator length and the system parameters.The power required for the seeding in the second part of the undulator and the overall efficiency of monochromatizating the seeding determine the length of the first part of the undulator;the magnitude of seeding power dominates the length of the second part of the undulator;the whole length of the undulator in a self-seeding FEL is determined by the overall efficiency for getting coherent seed,and is about half as long again as that of SASE,not including the dispersion section.The requirement of the dispersion section strength is also analyzed.  相似文献   

7.
Direct seeding with a high-harmonic generation (HHG) source can improve the spectral, temporal, and coherence properties of a free-electron laser (FEL) and shall reduce intensity and arrival-time fluctuations. In the seeding experiment sFLASH at the extreme ultraviolet FEL in Hamburg FLASH, which operates in the self-amplified spontaneous emission mode (SASE), the 21st harmonic of an 800 nm laser is refocused into a dedicated seeding undulator. For seeding, the external light field has to overcome the noise level of SASE; therefore, an efficient coupling between seed pulse and electron bunch is mandatory. Thus, an HHG beam with a proper divergence, width, beam quality, Rayleigh length, pointing stability, single-shot pulse energy, and stability in the 21st harmonic is needed. Here, we present the setup of the HHG source that seeds sFLASH at 38.1 nm, the optimization procedures, and the necessary diagnostics.  相似文献   

8.
Generation of X-ray radiation in a cascade self-amplified spontaneous emission free-electron laser (SASE FEL) using the harmonics of a two-frequency undulator is studied. The advanced phenomenological model of a one-pass FEL that accounts for the main losses in real FELs is presented: the electron energy spread in the beam, the beam divergence, diffraction, and the fact that emission losses are greater at higher harmonics than in the main frequency range. The FEL mathematical model was performed using the Mathematica software and calibrated within the experiment carried out at the operating SPARC facility via complex three-dimensional numerical simulations. The phenomenological model is used to analyze FEL dynamics for generation of a high-energy X-ray emission at a relatively short length. It is proposed to use a two-frequency undulator for the initial electron grouping and subsequent frequency multiplication in a cascade FEL with higher harmonic amplification (HGHG). The advantages of the two-frequency undulator are presented for electron grouping at higher harmonics of the undulator radiation (UR). The operation of several types of FEL is simulated with amplification of the seed laser wave frequency in two and three cascades to generate the soft X-ray radiation. A seed laser with a wavelength of 11.43 nm corresponding to the peak reflectivity of mirror coatings with MoRu/Be is proposed for generating the intensive X-ray laser radiation with λ ~ 1.27–3.37 nm. Here, the intensive radiation power reaches 50 MW at a length of only 35 meters; the radiation shows good temporal coherence corresponding to the performance of a low-power seed laser with a lower frequency.  相似文献   

9.
Optimization studies for an accelerator based light source, namely self-amplified spontaneous emission (SASE) free electron laser (FEL), based on new generation in-vacuum hybrid and superconducting undulator configurations, are compared and discussed. It is shown that the FEL wavelength should be down to soft X-rays (3nm) part of the spectrum while keeping the same linear accelerator (linac) energy about 1 GeV. On the other hand, numerical calculations and simulation results of the main performance parameters for SASE operation (1D gain length, saturation power and saturation length), are optimized. Finally, technological advantages and challenges for both cases, are briefly mentioned.  相似文献   

10.
Observation of ultrawide bandwidth, up to 15% full-width, high-gain operation of a self-amplified spontaneous emission free-election laser (SASE FEL) is reported. This type of lasing is obtained with a strongly chirped beam (deltaE/E approximately 1.7%) emitted from the accelerator. Because of nonlinear pulse compression during transport, a short, high current bunch with strong mismatch errors is injected into the undulator, giving high FEL gain. Start-to-end simulations reproduce key features of the measurements and provide insight into mechanisms, such as angular spread in emitted photon and electron trajectory distributions, which yield novel features in the radiation spectrum.  相似文献   

11.
Diagnostic technique applied for FEL ultrashort electron bunches is developed at JINR-DESY collaboration within the framework of the FLASH and XFEL projects. Photon diagnostics are based on calorimetric measurements and detection of undulator radiation. The infrared undulator constructed at JINR and installed at FLASH is used for longitudinal bunch shape measurements and for two-color lasing provided by the FIR and VUV undulators. The pump probe experiments with VUV and FIR undulators provide the bunch profile measurements with resolution of several femtosecond. The new three microchannel plates (MCP) detectors operated in X-ray range are under development now in JINR for SASE1-SASE 3 European XFEL.  相似文献   

12.
Nonlinear harmonic radiation was observed using the VISA self-amplified, spontaneous emission (SASE) free-electron laser (FEL) at saturation. The gain lengths, spectra, and energies of the three lowest SASE FEL modes were experimentally characterized. The measured nonlinear harmonic gain lengths and center spectral wavelengths decrease with harmonic number, n, which is consistent with nonlinear harmonic theory. Both the second and third nonlinear harmonics energies are about 1% of the fundamental energy. These experimental results demonstrate for the first time the feasibility of using nonlinear harmonic SASE FEL radiation to produce coherent, femtosecond x rays.  相似文献   

13.
B. Ketenoğlu  Ö. Yavaş 《Optik》2012,123(11):1006-1009
A self amplified spontaneous emission (SASE) free electron laser (FEL) based on a new generation superconducting planar undulator, is optimized. It is shown that the laser wavelength should be down to soft X-rays range (~2–3 nm) of the spectrum via a dedicated undulator driven by a 1 GeV electron linear accelerator (linac). Numerical calculations and simulation results of the three main performance parameters for SASE operation, namely 1D gain length (LG,1D), saturation power (Psat) and saturation length (Lsat), are compared and discussed.  相似文献   

14.
Because of the stochastic nature of self-amplified spontaneous emission (SASE), it is crucial to measure for single pulses the spectral characteristics of ultrashort pulses from the vacuum ultraviolet free electron laser (FLASH) at DESY, Germany. To meet this particular challenge, we have employed both photon and photoelectron spectroscopy. Each FEL pulse is composed of an intense and spectrally complex fundamental, centered at a photon energy of about 38.5 eV, with a bandwidth of 0.5% accompanied by higher harmonics, each carrying an intensity of typically 0.3 to 0.6% of that of the fundamental. The correlation between the harmonics and the fundamental is in remarkable agreement with a simple statistical model of SASE FEL radiation.  相似文献   

15.
We report the first measurements of the electron-beam microbunching z dependence in a self-amplified spontaneous-emission (SASE) free-electron laser (FEL) experiment by the observation of visible wavelength coherent transition radiation (CTR). In this case the fundamental SASE wavelength was at 537 nm, and the CTR exhibited an exponential intensity growth similar to the SASE radiation. In addition, we observed for the first time structure in the CTR angular distribution patterns that may be useful for optimizing SASE FEL performance.  相似文献   

16.
Self-seeding schemes, consisting of two undulators with a monochromator in between, aim to reduce the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg transmission geometry for self-seeding in the hard X-ray range. The obvious and technically possible extension is to use such kind of monochromator setup with two (or more) crystals arranged in a series to spectrally filter the SASE radiation at two (or more) closely-spaced wavelengths within the FEL gain band. This allows for the production of doublet (or multiplet) spectral lines. Exploitations of such mode of operation involve any situation where there is a large change in cross-section over a narrow wavelength range. In this paper we consider the simultaneous operation of the LCLS hard X-ray FEL at two closely spaced wavelengths. We present simulation results for the LCLS baseline, and we show that this method can produce fully coherent radiation shared between two longitudinal modes. Mode spacing can be easily tuned within the FEL gain band, i.e. within 10 eV. An interesting aspect of the proposed scheme is a way of modulating the electron bunch at optical frequencies without a seed quantum laser. In fact, the XFEL output intensity contains an oscillating “mode-beat” component whose frequency is related to the frequency difference between the pair of longitudinal modes considered. Thus, at saturation one obtains FEL-induced modulations of energy loss and energy spread in the electron bunch at optical frequency. These modulations can be converted into density modulation at the same optical frequency with the help of a weak chicane installed behind the baseline undulator. Powerful coherent radiation can then be generated with the help of an optical transition radiation (OTR) station, which have important applications. In this paper we briefly consider how the doublet structure of the XFEL generation spectra can be monitored by an optical spectrometer. Furthermore, the OTR coherent radiation pulse is naturally synchronized with the X-ray pulses, and can be used for timing the XFEL to high power conventional lasers with femtosecond accuracy for pump-probe applications.  相似文献   

17.
利用微扰展开技术推导出变参数波振器的小信号增益两个近似求积表达式并将其计算结果与数值模拟结果进行了比较,二者吻合很好。利用近似解析式对小信号增益进行了初步探讨,得到了电子入射能量可低于初始谐振能,能散度允许范围受波振器设计影响以及降低锥度改变率可提高小信号增益等新结论。  相似文献   

18.
SASE自由电子激光起振问题及统计特性的数值模拟   总被引:2,自引:2,他引:0       下载免费PDF全文
 介绍一种自放大自发辐射自由电子激光(SASE FEL)的自发辐射和电子束噪声的数学描述,运用修正的一维非定态程序,对SASE FEL 起振问题及光场统计特性进行了数值模拟,分析了自发辐射谱的发展过程及一定频带宽度内光场随机特性的统计规律,数值模拟结果与理论结果符合较好。  相似文献   

19.
An optimization of the undulator layout of X‐ray free‐electron‐laser (FEL) facilities based on placing small chicanes between the undulator modules is presented. The installation of magnetic chicanes offers the following benefits with respect to state‐of‐the‐art FEL facilities: reduction of the required undulator length to achieve FEL saturation, improvement of the longitudinal coherence of the FEL pulses, and the ability to produce shorter FEL pulses with higher power levels. Numerical simulations performed for the soft X‐ray beamline of the SwissFEL facility show that optimizing the advantages of the layout requires shorter undulator modules than the standard ones. This proposal allows a very compact undulator beamline that produces fully coherent FEL pulses and it makes possible new kinds of experiments that require very short and high‐power FEL pulses.  相似文献   

20.
Experimental evidence for self-amplified spontaneous emission (SASE) at 530 nm is reported. The measurements were made at the low-energy undulator test line facility at the Advanced Photon Source, Argonne National Laboratory. The experimental setup and details of the experimental results are presented, as well as preliminary analysis. This experiment extends to shorter wavelengths the operational knowledge of a linac-based SASE free-electron laser and explicitly shows the predicted exponential growth in intensity of the optical pulse as a function of length along the undulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号