首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to clarify the tunneling spectroscopy in high-Tc cuprates, we study electronic state of the surface in the strongly correlated electron systems. First, we obtain Green's function of strongly correlated normal bulk system using the fluctuation exchange (FLEX) approximation. Next, we insert infinite potential into the bulk system and obtain Green's function of surface. We find that the density of states (DOS) in strongly correlated bulk systems are different from that on the surface, and the difference decreases as the magnitude of Coulomb interaction (U) increases.  相似文献   

2.
Low temperature transport phenomena in strongly collision rate τ(T) is evaluated in closed form and applied to the calculation of the resistivity ρ(T). The ratio of ρ(T) to the square of the specific heat C V(T) is shown to be a nearly universal function independent of the effective interaction between particles in medium. The result is found to be close to the well known Kadowaki-Woods ratio deduced from available experimental data on heavy fermion systems.  相似文献   

3.
A new variational method is used to investigate the ground state of the Hubbard model with a half-filled band for a one-dimensional chain, a planar square lattice, and a simple cubic lattice. A metamagnetic transition is found to occur in a one-dimensional chain and a simple square lattice. A simple cubic lattice does not undergo the metamagnetic transition.  相似文献   

4.
5.
We study numerically the ground-state properties of the one-dimensional quarter-filled strongly correlated electronic system interacting antiferromagnetically with localized S = 1/2 spins. It is shown that the charge-ordered state is significantly stabilized by the introduction of relatively small coupling with the localized spins. When the coupling becomes large the spin and charge degrees of freedom behave quite independently and the ferromagnetism is realized. Moreover, the coexistence of ferromagnetism with charge order is seen in the strongly interacting region. The present theoretical results are to be compared with the experiments on phthalocyanine compounds.  相似文献   

6.
A brief account of the zero temperature magnetic response of a system of strongly correlated electrons in strong magnetic field is given in terms of its quasiparticle properties. The scenario is based on the paramagnetic phase of the half-filled Hubbard model, and the calculations are carried out with the dynamical mean field theory (DMFT) together with the numerical renormalization group (NRG). As well known, in a certain parameter regime one finds a magnetic susceptibility which increases with the field strength. Here, we analyze this metamagnetic response based on Fermi liquid parameters, which can be calculated within the DMFT-NRG procedure. The results indicate that the metamagnetic response can be driven by field-induced effective mass enhancement. However, also the contribution due to quasiparticle interactions can play a significant role. We put our results in context with experimental studies of itinerant metamagnetic materials.  相似文献   

7.
It is shown that strongly correlated electrons on frustrated lattices like pyrochlore, checkerboard or kagomè lattice can lead to the appearance of closed and open strings. They are resulting from nonlocal subsidiary conditions which propagating strongly correlated electrons require. The dynamics of the strings is discussed and a number of their properties are pointed out. Some of them are reminiscent of particle physics.  相似文献   

8.
Electron-electron interactions generally reduce the low temperature resistivity due to the screening of the impurity potential by the electron gas. In the weak-coupling limit, the magnitude of this screening effect is determined by the thermodynamic compressibility which is proportional to the inverse screening length. We show that when strong correlations are present, although the compressibility is reduced, the screening effect is nevertheless strongly enhanced. This phenomenon is traced to the same nonperturbative Kondo-like processes that lead to strong mass enhancements, but which are absent in weak-coupling approaches. We predict metallicity to be strongly stabilized in an intermediate regime where the interactions and the disorder are of comparable magnitude.  相似文献   

9.
We investigate one-dimensional strongly correlated electron models which have the resonating-valence-bond state as the exact ground state. The correlation functions are evaluated exactly using the transfer matrix method for the geometric representations of the valence-bond states. In this method, we only treat matrices with small dimensions. This enables us to give analytical results. It is shown that the correlation functions decay exponentially with distance. The result suggests that there is a finite excitation gap, and that the ground state is insulating. Since the corresponding noninteracting systems may be insulating or metallic, we can say that the gap originates from strong correlation. The persistent currents of the present models are also investigated and found to be exactly vanishing.  相似文献   

10.
11.
Summary In the present work we have applied the correlated squeezed-state approach to investigate the ground state of the extended Hubbard model which is coupled to local Holstein phonons. Our study begins with decoupling the electron and phonon subsystems approximately by introducing a variational correlated squeezed-state ansatz for the phonons. Then assuming the renormalized intersite electron correlation of the effective electronic Hamiltonian to be attractive and the renormalized on-site correlation repulsive, we have applied the generalized Hartree-Fock approximation to obtain the ground state of the system, which is a superconducting state with intersite pairing. With optimal values of the variational parameters the correlated squeezed-state approach will by construction yield a ground-state energy lower than those obtained in previous studies. This means that our variational ansatz is more stable as the ground state of the system. Furthermore, our variational study shows that in the correlated squeezed state the polaronic reduction effect of phonons is much more alleviated, and thus the mass enhancement inherent to the polaron effect is noticeably weakened. This weakening of the reduction effect should, in turn, significantly affect other physical properties of the system.  相似文献   

12.
We present an exact solution of an experimentally realizable and strongly interacting one-dimensional spin system which is a limiting case of a quantum Ising model with long range interaction in a transverse and longitudinal field. Pronounced quantum fluctuations lead to a strongly correlated liquid ground state. For open boundary conditions the ground state manifold consists of four degenerate sectors whose quantum numbers are determined by the orientation of the edge spins. Explicit expressions for the entanglement properties, the exact excitation gap, as well as the exact wave functions for a couple of excited states are analytically derived and discussed. We outline how this system can be experimentally realized in a lattice gas of Rydberg atoms.  相似文献   

13.
14.
15.
We study the interaction of electrons with phonons in strongly correlated solids, having high-T(c) cuprates in mind. Using sum rules, we show that the apparent strength of this interaction strongly depends on the property studied. If the solid has a small fraction (doping) delta of charge carriers, the influence of the interaction on the phonon self-energy is reduced by a factor delta, while there is no corresponding reduction of the coupling seen in the electron self-energy. This supports the interpretation of recent photoemission experiments, assuming a strong coupling to phonons.  相似文献   

16.
We investigate the charge-instabilities of the Hubbard-Holstein model with two coupled layers. In this system the scattering processes naturally separate into contributions which are either symmetric or antisymmetric combinations with respect to exchange of the layers. It turns out that the short-range strong correlations suppress finite wave-vector nesting instabilities for both symmetries but favor the occurrence of phase separation in the symmetric channel. Inclusion of a sizeable long-range Coulomb (LRC) interaction frustrates the q=0 instabilities and supports the formation of incommensurate charge-density waves (CDW). Upon reducing doping from half-filling and for small electron-phonon coupling g the CDW instability first occurs in the antisymmetric channel but both instability lines merge with increasing g. While LRC forces always suppress the phase separation instability in the symmetric channel, the CDW period in the antisymmetric sector tends to infinity ( ) for sufficiently small Coulomb interaction. This feature allows for the possibility of singular scattering over the whole Fermi surface. We discuss possible implications of our results for the bilayer high-T c cuprates.Received: 21 July 2003, Published online: 2 October 2003PACS: 71.27.+a Strongly correlated electron systems; heavy fermions - 74.72.-h Cuprate superconductors (high-T c and insulating parent compounds) - 74.25.Kc Phonons  相似文献   

17.
18.
The interplay of strong interaction and strong disorder, as contained in the Anderson-Hubbard model, is addressed using two nonperturbative numerical methods: the Lanczos algorithm in the grand canonical ensemble at zero temperature and quantum Monte Carlo simulations. We find distinctive evidence for a zero-energy anomaly which is robust upon variation of doping, disorder, and interaction strength. Its similarities to, and differences from, pseudogap formation in other contexts, including perturbative treatments of interactions and disorder, classical theories of localized charges, and in the clean Hubbard model, are discussed.  相似文献   

19.
The many-electron ground state wave function and energy of diamond are calculated. Thereby electron correlations are properly taken into account. This is achieved by applying a recently developed local approach to their computation. The results for the inter- and intra-atomic correlation energies are compared with those for CH4 and the carbon atom.  相似文献   

20.
Phase transitions caused by the redistribution of quasiparticle occupation numbers n(p) in homogeneous Fermi systems with particle repulsion are analyzed. The phase diagram of a strongly correlated Fermi system, when drawn in the coordinates “density ρ-dimensionless coupling constant η,” resembles a Washington pie for a rather broad class of interactions. Its upper part is “filled” with Fermi condensate, and the bottom part is filled with normal Fermi liquid. Both parts are separated by a narrow interlayer of Lifshitz phase with a multiply connected Fermi surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号