首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a sensitive, specific, rapid and low cost picoliter microsphere-based platform for bioanalyte detection and quantification. In this method, a biological sample, biosensing microspheres, and fluorescently labeled detection (secondary) antibodies are co-encapsulated to capture the analyte (here: human anti-tetanus immunoglobulin G) on the surface of the microsphere in microfluidic pL-sized droplets. The absorption of the analyte and detecting antibodies on the microsphere concentrate the fluorescent signal in correlation with analyte concentration. Using our platform and commercially available antibodies, we were able to quantify anti-tetanus antibodies in human serum. In comparison to standard bulk immunosorbent assays, the microfluidic droplet platform presented here reduces the reagent volume by four orders of magnitude, while fast reagent mixing reduces the detection time from hours to minutes. We consider this platform to be a major leap forward in the miniaturization of immunosorbent assays and to provide a rapid and low cost tool for global point-of-care.
Figure
We have developed a sensitive, specific, rapid and low cost pico-liter microsphere based platform for detection and quantification of human anti-tetanus immunoglobulin G. In this method, a biological sample, biosensing microspheres, and fluorescently labeled detection antibodies are co-encapsulated to capture the analyte on the surface of the microsphere in microfluidic pL-sized droplets. Using our platform and commercially available antibodies, we quantified the anti-tetanus antibodies content in human serum.  相似文献   

2.
In this paper a novel method for phylogenetic analysis of H5N1 avian influenza virus has been proposed. At first we provide a mapping of virus protein sequence. Based on this mapping, we propose a new distance measure and make use of the corresponding similarity matrix to construct phylogenic tree without requiring multiple alignment. As an application, we construct phylogenic tree for 123 species of H5N1 avian influenza virus. The phylogeny obtained is generally consistent with evolutionary trees constructed in previous studies.  相似文献   

3.
4.
A highly sensitive electrochemical immunoassay method for detection of H1N1 influenza virus with the signal amplification of CuO nanoparticles (NPs) has been demonstrated.  相似文献   

5.
Lien KY  Lin JL  Liu CY  Lei HY  Lee GB 《Lab on a chip》2007,7(7):868-875
This study reports a new microfluidic system with three integrated functional devices for pumping, mixing and separation of bio-samples by utilizing micro-electro-mechanical-systems technology. By using antibody-conjugated magnetic beads, the developed system can be used to purify and enrich virus samples such that the subsequent detection of viruses can be performed with a higher sensitivity. The target viruses were first captured by the antibody coated onto the magnetic beads by using a rotary micromixer which performed the incubation process. The viruses were then purified and enriched by a magnetic field generated by planar microcoils. The integrated microfluidic system can perform the whole purification and enrichment process automatically using a rotary micropump and appropriate microvalves. In addition, a numerical simulation was also employed to optimize the design of the microcoils and to investigate the magnetic field strength and distribution. The simulation results were consistent with experimental observations. Finally, the developed system was used to successfully perform the purification and enrichment of Dengue viruses. The detectable limit of Dengue viruses was found to be as low as 10(2) pfu ml(-1) by using this approach. Therefore, the integrated microsystem can perform incubation, transportation, mixing and purification of virus samples, possibly making it a promising platform for future biological and medical applications.  相似文献   

6.
The influenza virus surface glycoprotein antigen neuraminidase (NA) is a crucial viral enzyme with many potential medical applications; therefore, the development of efficient upstream and downstream processing strategy for the expression and purification of NA is of high importance. In the present work the NA gene from the H1N1 influenza virus strain A/Beijing/262/95 was cloned from viral RNA and expressed in expresSF+ insect cells using the baculovirus expression vector system (BVES). A limited affinity-ligand library was synthesized and evaluated for its ability to bind and purify the recombinant H1N1 neuraminidase. Affinity-ligand design was based on mimicking the interactions of the lock-and-key (LAK) motif (Phe-Gly-Gln), a common structural moiety found in the subunit interface of glutathione S-transferase I (GST I), and plays an important structural role in subunit-subunit recognition. Solid-phase combinatorial chemistry was used to synthesize 13 variants of the lock-and-key lead ligand (Phe-Trz-X, where X was selected alpha-amino acid) using the 1,3,5-triazine moiety (Trz) as the scaffold for assembly. One immobilized ligand, bearing phenylalanine and isoleucine linked on the chlorotriazine ring (Phe-Trz-Ile), displayed high affinity for NA. Absorption equilibrium and molecular modeling studies were carried out to provide a detailed picture of Phe-Trz-Ile interaction with NA. This LAK-mimetic affinity adsorbent was exploited in the development of a facile purification protocol for NA, which led to 335-fold purification in a single-step. The present purification procedure is the most efficient reported so far for recombinant NA.  相似文献   

7.
As continuous outbreak of avian influenza (AI) has become a threat to human health, economic development and social stability, it is urgently necessary to detect the highly pathogenic avian influenza H5N1 virus quickly. In this study, we fabricated indium-tin-oxide thin-film transistors (ITO TFTs) on a glass substrate for the detecting of AI H5N1. The ITO TFT is fabricated by a one-shadow-mask process in which a channel layer can be simultaneously self-assembled between ITO source/drain electrodes during magnetron sputtering deposition. Monoclonal anti-H5N1 antibodies specific for AI H5N1 virus were covalently immobilized on the ITO channel by (3-glycidoxypropyl)trimethoxysilane. The introduction of target AI H5N1 virus affected the electronic properties of the ITO TFT, which caused a change in the resultant threshold voltage (VT) and field-effect mobility. The changes of IDVG curves were consistent with an n-type field effect transistor behavior affected by nearby negatively charged AI H5N1 viruses. The transistor based sensor demonstrated high selectivity and stability for AI H5N1 virus sensing. The sensor showed linear response to AI H5N1 in the concentrations range from 5 × 10−9 g mL−1 to 5 × 10−6 g mL−1 with a detection limit of 0.8 × 10−10 g mL−1. Moreover, the ITO TFT biosensors can be repeatedly used through the washing processes. With its excellent electric properties and the potential for mass commercial production, ITO TFTs can be promising candidates for the development of label-free biosensors.  相似文献   

8.
Continuous outbreaks of avian influenza (AI) in recent years with increasing threat to animals and human health have warranted the urgent need for rapid detection of pathogenic AI viruses. In this study, an impedance immunosensor based on an interdigitated array (IDA) microelectrode was developed as a new application for sensitive, specific and rapid detection of avian influenza virus H5N1. Polyclonal antibodies against AI virus H5N1 surface antigen HA (Hemagglutinin) were oriented on the gold microelectrode surface through protein A. Target H5N1 viruses were then captured by the immobilized antibody, resulting in a change in the impedance of the IDA microelectrode surface. Red blood cells (RBCs) were used as biolabels for further amplification of the binding reaction of the antibody-antigen (virus). The binding of target AI H5N1 onto the antibody-modified IDA microelectrode surface was further confirmed by atomic force microscopy. The impedance immunosensor could detect the target AI H5N1 virus at a titer higher than 103 EID50/ml (EID50: 50% Egg Infective Dose) within 2 h. The response of the antibody-antigen (virus) interaction was shown to be virus titer-dependent, and a linear range for the titer of H5N1 virus was found between 103 and 107 EID50/ml. Equivalent circuit analysis indicated that the electron transfer resistance of the redox probe [Fe(CN)6]3−/4− and the double layer capacitance were responsible for the impedance change due to the protein A modification, antibody immobilization, BSA (bovine serum albumin) blocking, H5N1 viruses binding and RBCs amplification. No significant interference was observed from non-target RNA viruses such as Newcastle disease virus and Infectious Bronchitis disease virus. (The H5N1 used in the study was inactivated virus.)  相似文献   

9.
Since March 2009, the rapid spread of infection during the recent A/H1N1 swine flu pandemic has raised concerns of a far more dangerous outcome should this virus become resistant to current drug therapies. Currently oseltamivir (tamiflu) is intensively used for the treatment of influenza and is reported effective for 2009 A/H1N1 virus. However, as this virus is evolving fast, some drug-resistant strains are emerging. Therefore, it is critical to seek alternative treatments and identify roots of the drug resistance. In this paper, we use the steered molecular dynamics (SMD) approach to estimate the binding affinity of ligands to the glycoprotein neuraminidase. Our idea is based on the hypothesis that the larger is the force needed to unbind a ligand from a receptor the higher its binding affinity. Using all-atom models with Gromos force field 43a1 and explicit water, we have studied the binding ability of 32 ligands to glycoprotein neuraminidase from swine flu virus A/H1N1. The electrostatic interaction is shown to play a more important role in binding affinity than the van der Waals one. We have found that four ligands 141562, 5069, 46080, and 117079 from the NSC set are the most promising candidates to cope with this virus, while peramivir, oseltamivir, and zanamivir are ranked 8, 11, and 20. The observation that these four ligands are better than existing commercial drugs has been also confirmed by our results on the binding free energies obtained by the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method. Our prediction may be useful for the therapeutic application.  相似文献   

10.
He C  Yang Z  Tong K 《Journal of chromatography. A》2011,1218(31):5279-5285
A downstream processing was examined for Vero cell-derived human influenza virus (H1N1) grown in serum free medium. Vero cell banks were established in serum free medium and characterized according to regulatory requirements. Serum free Vero cells were grown on Cytodex 3 microcarriers in 5L bioreactor and infected with influenza A virus (A/New Caledonia/99/55). The harvests were processed with the sequence of inactivation, clarification, anion exchange chromatography (DEAE FF), Cellufine Sulfate Chromatography (CSC) and size exclusion chromatography (Sepharose 6FF). Host cell DNA (hcDNA) was mainly removed with DEAE FF column and CSC by 40 and 223 fold, respectively. Most of Vero cell proteins were eliminated in CSC and Sepharose 6FF unit operation by about 13 fold. The overall scheme resulted in high recovery of hemagglutinin (HA) activity and the substantial removal of total protein, host protein and DNA. The total protein content and DNA content per 15 μg HA protein in final product was 89 μg and 33 pg, respectively, which complied with regulatory requirements for single strain influenza vaccines. SDS-PAGE analysis and Western blotting confirmed the purity of the final product. In conclusion, the suggested downstream process is suitable for the purification of microcarrier-based cell-derived influenza vaccine.  相似文献   

11.
Development of rapid screening in the ambulatory environment is the most pressing needs for the control of spread of infectious disease. Despite there are many methods to detect the immunoassay results, quantitative measurement in rapid disease screening is still a great challenge for point-of-care applications. In this work, based on the internal structural protein, i.e., nucleoprotein (NP), and outer surface glycoproteins, i.e., H1 and H3, of the influenza viruses, specific and sensitive immunoassay on paper-based platform was evaluated and confirmed. Detection and subtyping of influenza A H1N1 and H3N2 viruses found in people were demonstrated by colorimetric paper-based sandwich immunoassay. Concentration-dependent response to influenza viruses was shown and the detection limits could achieve 2.7 × 103 pfu/assay for H1 detection and 2.7 × 104 pfu/assay for H3 detection, which are within the clinical relevant level. Moreover, detection of influenza virus from infected cell lysate and clinical samples was demonstrated to further confirm the reliability of the paper-based immunoassay. The use of paper for the development of diagnostic devices has the advantages of lightweight, ease-of-use, and low cost and paper-based immunoassay is appropriate to apply for rapid screening in point-of-care applications.  相似文献   

12.
To determine the compounds responsible for its anti-influenza activities, we isolated the three flavonoids, 6-hydroxyluteolin 7-O-β-d-glucoside (1), nepitrin (2), homoplantaginin (3) from the MeOH extract of Salvia plebeia R.Br. and identified them by comparing the spectroscopic data with that reported in the literature. The contents of the three flavonoids in the whole extract were 108.74 ± 0.95, 46.26 ± 2.19, and 69.35 ± 1.22 mg/g for 6-hydroxyluteolin 7-O-β-d-glucoside, nepitrin, and homoplantaginin, respectively, which demonstrates that they are the major constituents of this plant. The three flavonoids were evaluated for their inhibitory activities against influenza virus H1N1 A/PR/9/34 neuraminidase and H1N1-induced cytopathic effect (CPE) on Madin-Darby canine kidney (MDCK) cells. Our results demonstrated the following arrangement for their anti-influenza activities: nepitrin (2) > 6-hydroxyluteolin 7-O-β-d-glucoside (1) > homoplantaginin (3). The potent inhibitory activities of these flavonoids against influenza suggested their potential to be developed as novel anti-influenza drugs in the future.  相似文献   

13.
Ha JW  Downard KM 《The Analyst》2011,136(16):3259-3267
The evolution of the major surface hemagglutinin (HA) antigen of type A H5N1 influenza viruses is explored at the amino acid level using a new proteotyping approach. Alignments of translated hemagglutinin gene sequences of all characterised type A H5N1 strains, or subsets thereof, has enabled the presence of signature peptides of conserved sequence and unique mass to be investigated from the perspective of the host, period and region from which strains were isolated. Consistent with the rapid, cross species transmission of H5N1 strains among migratory birds, poultry and humans throughout south-east Asia, no signatures unique to the host or region were found. Nevertheless, several period-specific signature peptides were identified that enable strains associated with the 1997 H5N1 pandemic to be rapidly differentiated from those in circulation across the subsequent decade.  相似文献   

14.
The highly pathogenic avian influenza virus (HPAIV) A subtype H5N1 is causing threat to human health over the years. Phylogenetic analysis is an important tool for analyzing the evolution of influenza. A novel phylogenetic algorithm based on a new protein distance measure derived from the informational spectrum method (ISM) has been presented. The new phylogenetic approach allows assessment of functional evolution of protein sequences. The new ISM-based phylogenetic approach has been found to overcome some drawbacks of other phylogenetic approaches, particularly concerning sensitivity to a single mutation, deletion and the position of the mutation. The ISM-based approach applied to hemagglutinin subunit 1 protein (HA1) of HPAIV A subtype H5N1 viruses in Egypt between 2006 and 2011, revealed clear clustering in two groups, with one growing group of H5N1 viruses after 2009 with increased number of human infections with H5N1. Four group-specific mutations are identified which are important for increased human tropism and the pandemic potential.  相似文献   

15.
An integrated microfluidic biosensor is presented that combines sample pre-concentration and liposome-based signal amplification for the detection of enteric viruses present in environmental water samples. This microfluidic approach overcomes the challenges of long assay times of cell culture-based methods and the need to extensively process water samples to eliminate inhibitors for PCR-based methods. Here, viruses are detected using an immunoassay sandwich approach with the reporting antibodies tagged to liposomes. Described is the development of the integrated device for the detection of environmentally relevant viruses using feline calicivirus (FCV) as a model organism for human norovirus. In situ fabricated nanoporous membranes in glass microchannels were used in conjunction with electric fields to achieve pre-concentration of virus–liposome complexes and therefore enhance the antibody–virus binding efficiency. The concentrated complexes were eluted to a detection region downstream where captured liposomes were lysed to release fluorescent dye molecules that were then quantified using image processing. This system was compared to an optimized electrochemical liposome-based microfluidic biosensor without pre-concentration. The limit of detection of FCV of the integrated device was at 1.6 × 105 PFU/mL, an order of magnitude lower than that obtained using the microfluidic biosensor without pre-concentration. This significant improvement is a key step toward the goal of using this integrated device as an early screening system for viruses in environmental water samples.  相似文献   

16.
Influenza virus RNA was amplified by a continuous-flow polydimethylsiloxane microfluidic RT-PCR chip within 15-20 min. The amplified influenza virus RNA was observed with the naked eye, as the red color at the test line, using a lateral flow immunoassay within 1 min.  相似文献   

17.
《中国化学快报》2023,34(1):107446
Repeated waves of influenza virus H7N9 epidemics after 2013 have caused severe influenza in humans, with mortality reaching approximately 40%–50%. To prevent possible pandemics, the development of highly effective vaccines against influenza virus H7N9 is highly desired. In the present study, by taking advantage of the d-tetra-peptide adjuvant (GDFDFDY), we reported a simple method to prepare H7N9 vaccines. Naproxen (Npx), with good anti inflammatory and broad anti-viral effects, was employed as an N-terminal capping group to construct a hydrogel precursor, Npx-GDFDFDY. The hydrogel adjuvant was prepared using a routine heating cooling protocol and the final vaccine was ready after mixing with the split A/Zhejiang/DTID-ZJU01/2013 (H7N9) antigen by vortexing. Compared with the traditional Al(OH)3 adjuvant vaccine and the split vaccine, our hydrogel adjuvant vaccine showed the best preventive effects against H7N9 infection. A mechanistic study illustrated that higher antibody responses and variations in cytokine expression might account for its increased protective effects. Our strategy demonstrated the advantages of a peptide hydrogel adjuvant in the application of vaccines against H7N9 and demonstrated its potential application in vaccines against emerging threats from other viruses.  相似文献   

18.
Progesterone (P4) is a steroidal hormone with a vital role in the maintenance of human and animal health. This paper describes the development of an immunosensor coupled to glassy carbon (GC) electrode and integrated to a microfluidic system to quantify P4 from bovine serum samples in a fast and sensitive way. The serum samples spiked with a given P4 concentration and a given P4 concentration bound to horseradish peroxide (HPR) were simultaneously added and, therefore, they competed immunologically with sheep monoclonal anti-P4 antibodies that were immobilized at a rotating disk. HRP in the presence of hydrogen peroxide (H2O2) catalyzes the chatecol (H2Q) oxidation to benzoquinone (Q). Its reverse electrochemical reduction to H2Q can be detected at a GC electrode surface at −0.15 V by chronoamperometric measurements. These current responses are proportional to the enzyme activity and inversely proportional to the P4 amount present in bovine serum samples. This P4 immunosensor showed a linear working range from 0.5 to 12.5 ng mL−1. The detection (DL) and quantification (QL) limits were 0.2 and 0.5 ng mL−1, respectively. The electrochemical immunosensor had a higher sensitivity than the ELISA method using conventional spectrophotometric detections. However, both methods allowed us to obtain similar detection limits. The immunosensor allowed us to make up to 100 determinations on different samples without any previous pre-treatment. This behavior proved to be suitable to detect P4 in routine veterinary, clinical, biological, physiological, and analytical assays.  相似文献   

19.
As a result of the low concentration of avian influenza viruses in samples for routine screening, the separation and concentration of these viruses are vital for their sensitive detection. We present a novel three‐dimensional printed magnetophoretic system for the continuous flow separation of the viruses using aptamer‐modified magnetic nanoparticles, a magnetophoretic chip, a magnetic field, and a fluidic controller. The magnetic field was designed based on finite element magnetic simulation and developed using neodymium magnets with a maximum intensity of 0.65 T and a gradient of 32 T/m for dragging the nanoparticle–virus complexes. The magnetophoretic chip was designed by SOLIDWORKS and fabricated by a three‐dimensional printer with a magnetophoretic channel for the continuous flow separation of the viruses using phosphate‐buffered saline as carrier flow. The fluidic controller was developed using a microcontroller and peristaltic pumps to inject the carrier flow and the viruses. The trajectory of the virus–nanoparticle complexes was simulated using COMSOL for optimization of the carrier flow and the magnetic field, respectively. The results showed that the H5N1 viruses could be captured, separated, and concentrated using the proposed magnetophoretic system with the separation efficiency up to 88% in a continuous flow separation time of 2 min for a sample volume of 200 μL.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号