首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we report the first electrochemistry-based real-time polymerase chain reaction technique for sequence-specific nucleic acid detection. This new technique builds upon the advantages of the well-established fluorescence-based counterpart, such as short assay time (simultaneous target DNA amplification and detection). In addition, this electrochemical approach could employ simple and miniaturizable instrumentation compared to the bulky and expensive optics required in the fluorescence-based schemes. We have demonstrated a proof-of-concept experiment showing that the utilization of solid-phase extension of the electrode surface-immobilized capture probe with Fc-dUTP during PCR resulted in the accumulation of the redox marker on the transducer surface. This new technique can be applied to a microfabricated PCR electrochemical device for point-of-care diagnostics as well as on-site environmental monitoring and biowarfare agent detection.  相似文献   

2.
电化学DNA生物传感器*   总被引:1,自引:0,他引:1  
张炯  万莹  王丽华  宋世平  樊春海 《化学进展》2007,19(10):1576-1584
对特异DNA序列的检测在基因相关疾病的诊断、军事反恐和环境监测等方面均具有非常重要的意义,DNA传感器的研究就是为了满足对特异DNA序列的快速、便捷、高灵敏度和高选择性检测的需要。近年来涌现出了多种传感策略,根据检测方法的不同可以大致分为光学传感器、电化学传感器、声学传感器等。由于电化学检测方法本身所具有的灵敏、快速、低成本和低能耗等特点,电化学DNA传感器已成为一个非常活跃的研究领域并在近几年中得到了快速发展。本文概括了近年来在DNA传感器的重要分支——电化学DNA传感器领域内的一些重要进展,主要包括DNA探针在传感界面上的固定方法和各种电化学DNA杂交信号的检测方法。  相似文献   

3.
Lee TM  Carles MC  Hsing IM 《Lab on a chip》2003,3(2):100-105
Microfabricated silicon/glass-based devices with functionalities of simultaneous polymerase chain reaction (PCR) target amplification and sequence-specific electrochemical (EC) detection have been successfully developed. The microchip-based device has a reaction chamber (volume of 8 microl) formed in a silicon substrate sealed by bonding to a glass substrate. Electrode materials such as gold and indium tin oxide (ITO) were patterned on the glass substrate and served as EC detection platforms where DNA probes were immobilized. Platinum temperature sensors and heaters were patterned on top of the silicon substrate for real-time, precise and rapid thermal cycling of the reaction chamber as well as for efficient target amplification by PCR. DNA analyses in the integrated PCR-EC microchip start with the asymmetric PCR amplification to produce single-stranded target amplicons, followed by immediate sequence-specific recognition of the PCR product as they hybridize to the probe-modified electrode. Two electrochemistry-based detection techniques including metal complex intercalators and nanogold particles are employed in the microdevice to achieve a sensitive detection of target DNA analytes. With the integrated PCR-EC microdevice, the detection of trace amounts of target DNA (as few as several hundred copies) is demonstrated. The ability to perform DNA amplification and EC sequence-specific product detection simultaneously in a single reaction chamber is a great leap towards the realization of a truly portable and integrated DNA analysis system.  相似文献   

4.
This review describes recently emerging optical and microfluidic technologies suitable for point-of-care genetic analysis systems. Such systems must rapidly detect hundreds of mutations from biological samples with low DNA concentration. We review optical technologies delivering multiplex sensitivity and compatible with lab-on-chip integration for both tagged and non-tagged optical detection, identifying significant source and detector technology emerging from telecommunications technology. We highlight the potential for improved hybridization efficiency through careful microfluidic design and outline some novel enhancement approaches using target molecule confinement. Optimization of fluidic parameters such as flow rate, channel height and time facilitates enhanced hybridization efficiency and consequently detection performance as compared with conventional assay formats (e.g. microwell plates). We highlight lab-on-chip implementations with integrated microfluidic control for “sample-to-answer” systems where molecular biology protocols to realize detection of target DNA sequences from whole blood are required. We also review relevant technology approaches to optofluidic integration, and highlight the issue of biomolecule compatibility. Key areas in the development of an integrated optofluidic system for DNA hybridization are optical/fluidic integration and the impact on biomolecules immobilized within the system. A wide range of technology platforms have been advanced for detection, quantification and other forms of characterization of a range of biomolecules (e.g. RNA, DNA, protein and whole cell). Owing to the very different requirements for sample preparation, manipulation and detection of the different types of biomolecules, this review is focused primarily on DNA–DNA interactions in the context of point-of-care analysis systems.  相似文献   

5.
Electrochemical biosensors pose an attractive solution for point-of-care diagnostics because they require minimal instrumentation and they are scalable and readily integrated with microelectronics. The integration of electrochemical biosensors with microscale devices has, however, proven to be challenging due to significant incompatibilities among biomolecular stability, operation conditions of electrochemical sensors, and microfabrication techniques. Toward a solution to this problem, we have demonstrated here an electrochemical array architecture that supports the following processes in situ, within a self-enclosed microfluidic device: (a) electrode cleaning and preparation, (b) electrochemical addressing, patterning, and immobilization of sensing biomolecules at selected sensor pixels, (c) sequence-specific electrochemical detection from multiple pixels, and (d) regeneration of the sensing pixels. The architecture we have developed is general, and it should be applicable to a wide range of biosensing schemes that utilize gold-thiol self-assembled monolayer chemistry. As a proof-of-principle, we demonstrate the detection and differentiation of polymerase chain reaction (PCR) amplicons diagnostic of human (H1N1) and avian (H5N1) influenza.  相似文献   

6.
Herpes simplex virus (HSV) is one of the most prevalent viruses, with acute and recurrent infections in humans. The current gold standard for the diagnosis of HSV is viral culture which takes 2-14 days and has low sensitivity. In contrast, DNA amplification by polymerase chain reaction (PCR) can be performed within 1-2 h. We here describe a multiparameter PCR assay to simultaneously detect HSV-1 and HSV-2 DNA templates, together with integrated positive and negative controls, with product detection by melting curve analysis (MCA), in an array of semi-solid polyacrylamide gel posts. Each gel post is 0.67 μL in volume, and polymerized with all the components required for PCR. Both PCR and MCA can currently be performed in one hour and 20 min. Unprocessed genital swabs collected in universal transport medium were directly added to the reagents before or after polymerization, diffusing from atop the gel posts. The gel post platform detects HSV templates in as little as 2.5 nL of raw sample. In this study, 45 genital swab specimens were tested blindly as a preliminary validation of this platform. The concordance of PCR on gel posts with conventional PCR was 91%. The primer sequestration method introduced here (wherein different primers are placed in different sets of posts) enables the simultaneous detection of multiple pathogens for the same sample, together with positive and negative controls, on a single chip. This platform accepts unprocessed samples and is readily adaptable to detection of multiple different pathogens or biomarkers for point-of-care diagnostics.  相似文献   

7.
A sequence-specific detection method of DNA is presented combining a solid chip surface for immobilisation of capture DNAs with a microfluidic platform and a readout of the chip based on SERS. The solid chip surface is used for immobilisation of different capture DNAs, where target strands can be hybridised and unbound surfactants can be washed away. For the detection via SERS, short-labelled oligonucleotides are hybridised to the target strands. This technique is combined with a microfluidic platform that enables a fast and automated preparation process. By applying a chip format, the problems of sequence-specific DNA detection in solution phase by means of SERS can be overcome. With this setup, we are able to distinguish between different complementary and non-complementary target sequences in one sample solution.  相似文献   

8.
Chen X  Cui D  Liu C  Li H  Chen J 《Analytica chimica acta》2007,584(2):237-243
A novel integrated microfluidic device that consisted of microfilter, micromixer, micropillar array, microweir, microchannel, microchamber, and porous matrix was developed to perform sample pre-treatment of whole blood. Cell separation, cell lysis and DNA purification were performed in this miniaturized device during a continuous flow process. Crossflow filtration was proposed to separate blood cells, which could successfully avoid clogging or jamming. After blood cells were lyzed in guanidine buffer, genomic DNA in white blood cells was released and adsorbed on porous matrix fabricated by anodizing silicon in HF/ethanol electrolyte. The flow process of solutions was simulated and optimized. The anodization process of porous matrix was also studied. Using the continuous flow procedure of cell separation, cell lysis and DNA adsorption, average 35.7 ng genomic DNA was purified on the integrated microfluidic device from 1 μL rat whole blood. Comparison with a commercial centrifuge method, the miniaturized device can extract comparable amounts of PCR-amplifiable DNA in 50 min. The greatest potential of this integrated miniaturized device was illustrated by pre-treating whole blood sample, where eventual integration of sample preparation, PCR, and separation on a single device could potentially enable complete detection in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.  相似文献   

9.
Xiaoli Xu 《Talanta》2009,80(1):8-998
Micro-total analysis systems (μTAS) integrate different analytical operations like sample preparation, separation and detection into a single microfabricated device. With the outstanding advantages of low cost, satisfactory analytical efficiency and flexibility in design, highly integrated and miniaturized devices from the concept of μTAS have gained widespread applications, especially in biochemical assays. Electrochemistry is shown to be quite compatible with microanalytical systems for biochemical assays, because of its attractive merits such as simplicity, rapidity, high sensitivity, reduced power consumption, and sample/reagent economy. This review presents recent developments in the integration of electrochemistry in microdevices for biochemical assays. Ingenious microelectrode design and fabrication methods, and versatility of electrochemical techniques are involved. Practical applications of such integrated microsystem in biochemical assays are focused on in situ analysis, point-of-care testing and portable devices. Electrochemical techniques are apparently suited to microsystems, since easy microfabrication of electrochemical elements and a high degree of integration with multi-analytical functions can be achieved at low cost. Such integrated microsystems will play an increasingly important role for analysis of small volume biochemical samples. Work is in progress toward new microdevice design and applications.  相似文献   

10.
This study describes a simple and label-free electrochemical impedance spectroscopic (EIS) method for sequence-specific detection of DNA by using single-walled carbon nanotubes (SWNTs) as the support for probe DNA. SWNTs are confined onto gold electrodes with mixed self-assembly monolayers of thioethanol and cysteamine. Single-stranded DNA (ssDNA) probe is anchored onto the SWNT support through covalent binding between carboxyl groups at the nanotubes and amino groups at 5′ ends of ssDNA. Hybridization of target DNA with the anchored probe DNA greatly increases the interfacial electron-transfer resistance (Ret) at the double-stranded DNA (dsDNA)-modified electrodes for the redox couple of Fe(CN)63−/4−, which could be used for label-free and sequence-specific DNA detection. EIS results demonstrate that the utilization of SWNTs as the support for probe DNA substantially increases the surface loading of probe DNA onto electrode surface and thus remarkably lowers the detection limit for target DNA. Under the conditions employed here, Ret is linear with the concentration of target DNA within a concentration range from 1 to 10 pM with a detection limit down to 0.8 pM (S/N = 3). This study may offer a novel and label-free electrochemical approach to sensitive sequence-specific DNA detection.  相似文献   

11.
Fan A  Lau C  Lu J 《The Analyst》2008,133(2):219-225
A sensitive chemiluminescent (CL) detection of sequence-specific DNA has been developed by taking advantage of a magnetic separation/mixing process and the amplification feature of colloidal gold labels. In this protocol, the target oligonucleotides are hybridized with magnetic bead-linked capture probes, followed by the hybridization of the biotin-terminated amplifying DNA probes and the binding of streptavidin-coated gold nanoparticles; the nanometer-sized gold tags are then dissolved and quantified by a simple and sensitive luminol CL reaction. The proposed CL protocol is evaluated for a 30-base model DNA sequence, and the amount as low as 0.01 pmol of DNA is determined, which exhibits a 150 x enhancement in sensitivity over previous gold dissolution-based electrochemical formats and an enhancement of 20 x over the ICPMS detection. Further signal amplification is achieved by the assembly of biotinylated colloidal gold onto the surface of streptavidin-coated polystyrene beads. Such amplified CL transduction allows detection of DNA targets down to the 100 amol level, and offers great promise for ultrasensitive detection of other biorecognition events.  相似文献   

12.
13.
14.
We review the development of reagentless, electrochemical sensors for the sequence-specific detection of nucleic acids that are based on the target-induced folding or unfolding of electrode-bound oligonucleotides. These devices, which are sometimes termed E-DNA sensors, are comprised of an oligonucleotide probe modified on one terminus with a redox reporter and attached to an electrode at the other. Hybridization of this probe DNA to a target oligonucleotide influences the rate at which the redox reporter collides with the electrode, leading to a detectable change in redox current. Because all sensing elements of this method are strongly linked to the interrogating electrode, E-DNA sensors are label-free, operationally convenient and readily reusable. As E-DNA signaling is predicated on a binding-specific change in the dynamics of the probe DNA (rather than simply monitoring the adsorption of a target to the sensor surface) and because electroactive contaminants (interferents) are relatively rare, this class of sensors is notably resistant to false positives arising from the non-specific adsorption of interferents, and performs well even when challenged directly with blood serum, soil and other complex sample matrices. We review the history of and recent advances in this promising DNA and RNA detection approach.  相似文献   

15.
The lab-on-a-chip concept has led to several point-of-care (POC) diagnostic microfluidic platforms. However, few of these can process raw samples for molecular diagnosis and fewer yet are suited for use in a resource-limited setting without permanent electrical infrastructure. We present here a very low cost paper microfluidic device for POC extraction of bacterial DNA from raw viscous samples--a challenge for conventional microfluidic platforms. This is an example of "microfluidic origami" in that the system is activated by folding; demonstrated here is room temperature cell lysis and DNA extraction from pig mucin (simulating sputum) spiked with E. coli without the use of external power. The microfluidic origami device features dry reagent storage and rehydration of the lysis buffer. We demonstrate DNA extraction from samples with a bacterial load as low as 33 CFU ml(-1). Extraction times, starting from the raw sample, have been optimized to about 1.5 h without the use of external power, or to within 1 h using an oven or a heater block. The fabrication of this paper microfluidic device can be translated into high volume production in the developing world without the need for a semiconductor clean room or a microfabrication facility. The sample preparation can be performed with the addition of just the sample, water, ethanol and elute buffer to the device, thus reducing chemical hazards during transport and handling.  相似文献   

16.
17.
Nucleic acid amplification test is a reliable method for primary human immunodeficiency virus(HIV) infection diagnosis.Herein, a novel fluorescent method for sequence-specific recognition of DNA fragment of HIV-1 was established based upon nicking-assisted strand displacement amplification(SDA) and triplex DNA. In the presence of target dsDNA, nicking-assisted SDA process generated a lot of ssDNA, which hybridized with molecular beacon to produce signal. The fluorescence intensity was proportional to the concentration of target dsDNA within the range from 5 to 1000 pmol/L, with a detection limit of 1.4 pmol/L. Moreover, it successfully distinguished target dsDNA from the nucleic acid extractive of human blood. Thus this method has the merit of high sensitivity, and it is suitable for sequence-specific recognition of target dsDNA in complex matrices, which made it a potential application in diagnosis of acquired immunodeficiency syndrome(AIDS) in the future.  相似文献   

18.
A nonlabeling electrochemical detection method for analyzing the polymerase-chain-reaction-amplified sequence-specific p16 INK4A gene, in which the basis for the covalent immobilization of deoxyribonucleic acid (DNA) probe is described, has been developed. The self-assembly process was based on the covalent coupling of glutaraldehyde (GA) as an arm molecule onto an amino-functional surface. The p16 INK4A gene was used as the model target for the methylation detection of early cancer diagnosis. An amino-modified DNA probe was successfully assembled on the GA-coupling surface through the formation of Schiff base under potential control. The hybridization of amino-modified DNA probes with the target was investigated by means of electrochemical measurements, including cyclic voltammetry and square wave voltammetry. Furthermore, the functions of GA coupling for sequence-specific detection were compared with those obtained based on mercaptopropionic acid. Hybridization experiments indicated that the covalent coupling of GA was suitable for the immobilization of DNA probe and was sensitive to the electrochemical detection of single-base mismatches of label-free DNA targets in hybridization. Moreover, reported probe-modified surfaces exhibited excellent stability, and the hybridization reactions were found to be completely reversible and highly specific for recognition in subsequent hybridization processes. The strategy provided the potential for taking full advantage of existing modified electrode technologies and was verified in microarray technology, which could be applied as a useful and powerful tool in electrochemical biosensor and microarray technology.  相似文献   

19.
In this study, a sandwich‐type electrochemical enzyme‐based LNA‐modified DNA biosensor was developed to detect relative gene in chronic Myelogenous Leukemia first. This biosensor is based on a ‘sandwich’ detection strategy, which involves a pair of probes (a capture probe immobilized at the electrode surface and a reporter probe labeled biotin as an affinity tag for avidin‐HRP) modified LNA. Since biotin can be connected with avidin‐HRP, this biosensor offers an enzymatically amplified electrochemical current signal for the detection of target DNA. This new pattern exhibits high sensitivity and selectivity, and this biosensor has been used for an assay of PCR real sample with satisfactory result.  相似文献   

20.
DNA electrochemical biosensors   总被引:4,自引:0,他引:4  
Disposable electrochemical DNA-based biosensors are reviewed; they have been used for the determination of low-molecular weight compounds with affinity for nucleic acids and for the detection of the hybridisation reaction. The first application is related to the molecular interaction between surface-linked DNA and the target pollutants or drugs, in order to develop a simple device for rapid screening of toxic or similar compounds. The determination of such compounds was measured by their effect on the oxidation signal of the guanine peak of calf thymus DNA immobilised on the electrode surface and investigated by chronopotentiometric analysis. The DNA biosensor is able to detect known intercalating compounds, such as daunomycin, polychlorinated biphenyls (PCBs), aflatoxin B1, and aromatic amines. Applicability to river and waste water samples is also demonstrated. Disposable electrochemical sensors for the detection of a specific sequence of DNA were realised by immobilising synthetic single-stranded oligonucleotides onto a graphite screen-printed electrode. The probes became hybridised with different concentrations of complementary sequences present in the sample. The hybrids formed on the electrode surface were evaluated by chronopotentiometric analysis using daunomycin as indicator of the hybridisation reaction. The hybridisation was also performed using real samples. Application to apolipoprotein E (ApoE) is described, in this case samples have to be amplified by PCR and then analysed by DNA biosensor. The extension of such procedures to samples of environmental interest or to contamination of food is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号