首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of six radical cations of the type (D L D)+ was investigated at the ab initio unrestricted Hartree–Fock level. One localized and one delocalized conformation were systematically searched by full geometry optimization. At both nuclear arrangements, mostly found as being minima in the symmetry‐restrained Hartree–Fock framework, excitation energies were calculated through the expansion of the wave function on single electronic excitations of the Hartree–Fock fundamental determinant and at the unrestricted Hartree–Fock or at the multiconfigurational self consistent field levels. Few calculations were also performed by taking into account some part of the electronic correlation. Except for N,N,N′,N′‐tetramethyl p‐phenylenediamine, all the studied compounds are localized stable cations, at the symmetry‐restrained Hartree–Fock level. However, the reoptimization of their wave function changes this observation since only three of them seem to conserve a localized stable conformation. Most of the studied systems are characterized by one or two excited electronic states very close to the fundamental one and should thus present an unresolved broadened first absorption band in the near‐infrared region. These features are in agreement with the available experimental data. Strong Hartree–Fock instabilities are found for the delocalized structure and put in relation with the existence of the large nonadiabatic coupling in this conformational region. The solvent influence is discussed in the Onsager dipolar reaction field framework. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 552–573, 2000  相似文献   

2.
A characteristic new cooperative dehydration transition, in 1:1 Laponite-MMT cogel, was observed at T(c) ≈ 60 °C, a temperature at which the storage modulus (G(')) and depolarization ratio (D(p)) showed sharp increase, and the isotropic cogel turned into an anisotropic one. The dehydration dynamics could be described through power-law relations: G(') ~ (T(c)-T)(-γ) and D(p) ~ (T(c)-T)(-β) with γ ≈ β = 0.40 ± 0.05. The x-ray diffraction data revealed that the crystallite size decreased from 17 nm (at 20 °C) to 10 nm (at 80 °C) implying loss of free and inter-planar water. When this cogel was spontaneously cooled below T(c), it exhibited much larger storage modulii values which implied the existence of several metastable states in this system. This phase transition could be modeled through Landau theory, where the depolarization ratio was used as experimental order parameter (ψ). This parameter was found to scale with temperature, as ψ ~ (T(c)-T)(-α), with power-law exponent α = 0.40 ± 0.05; interestingly, we found α ≈ β ≈ γ.  相似文献   

3.
The presence or absence of infrared (IR) activity in totally symmetric bridging vibrations of ligand-bridged mixed-valence molecular systems has often been taken, on the basis of electronic (a)symmetry arguments, as markers for electronic localization (class II) or delocalization (class III) on the vibrational time scale. However, because IR absorption intensity in such nominally-forbidden modes may be anomalously enhanced due to vibronic coupling effects, especially for cases in the localized-to-delocalized (class II/III) transition regime, a direct and continuous correlation between the extent of (de)localization and IR activity is challenged. In order to experimentally illustrate such phenomena, here we provide a detailed comparison of relevant IR signatures across a series of structurally related, symmetric dinuclear complexes of the type [(bpy)2(Cl)M-pz-M(Cl)(bpy)2]n+ (bpy = 2,2′-bipyridine, pz = pyrazine, M = RuII,III or OsII,III; n = 2, 3, or 4), in which the “mixed valency” (II,III; n = 3) has been characterized as largely localized for M = Ru and approaching the near-delocalized behavior for M = Os. To improve analytical accuracy and facilitate standardization in the comparison of results spanning the various isovalent and mixed-valent redox species, the IR spectroscopic features were probed via an in situ spectroelectrochemical (SEC) approach, in identical medium (solution) conditions. The parent monomers, i.e. [(bpy)2(Cl)M-pz]n+ (M = RuII,III or OsII,III; n = 1 or 2), which represent the extreme examples of structural and electronic symmetry breaking in the series, were also investigated and compared with the dimers. In all cases reported here, the spectroscopic assignments of vibrational modes were supported by isotopic modification (deuteration) of the bridging pyrazine ligand.  相似文献   

4.
The synthesis, electronic structure, and oxidation-reduction chemistry of a homologous series of Zn(II) porphyrinogens are presented. The fully reduced member of the series, [LZn](2-), was prepared in two steps from pyrrole and acetone. The compound undergoes consecutive two-electron, ligand-based, oxidations at +0.21 and +0.63 V vs NHE to yield [L(Delta)Zn] and [L(Delta Delta)Zn](2+), which also have been independently prepared by chemical means. X-ray diffraction analysis of the redox intermediary, [L(Delta)Zn], shows that the partly oxidized macrocycle is composed of a methylene-bridged dipyrrole that is doubly strapped to a two-electron oxidized dipyrrole bridged by a cyclopropane ring (L(Delta)). The localization of two hole equivalents on the oxidized side of the porphyrinogen framework is consistent with a two-electron mixed valency formulation for the [L(Delta)Zn] species. Electronic structure calculations and electronic spectroscopy support this formalism. Density functional theory computations identify the HOMO to be localized on the reduced half of the macrocycle and the LUMO to be localized on its oxidized half. As implicated by the energy level diagram, the lowest energy transition in the absorption spectrum of [L(Delta)Zn] exhibits charge-transfer character. Taken together, these results establish the viability of using a ligand framework as a two- and four-electron/hole reservoir in the design of multielectron redox schemes.  相似文献   

5.
P state orientation and alignment created in direct, collision-inducedS ?P transitions of a quasi-one-electron atom are analyzed in the natural coordinate frame. In the velocity region of maximum transition probability, propensity rules for the orientation are derived, and their range of validity in impact parameter and velocity is discussed. The predictions are tested and illustrated by three-state calculations for Na(3s ? 3p) transitions in Na — He collisions.  相似文献   

6.
We relate the solvent and temperature dependence of the rates of intramolecular electron transfer (ET) of mixed valence complexes of the type {[Ru3O(OAc)6(CO)(L)]2-BL}-1, where L = pyridyl ligand and BL = pyrazine. Complexes were reduced chemically or electrochemically to obtain the mixed valence anions in seven solvents: acetonitrile, methylene chloride, dimethylformamide, tetrahydrofuran, dimethylsulfoxide, chloroform, and hexamethylphosphoramide. Rate constants for intramolecular ET were estimated by simulating the observed degree of nu(CO) IR band shape coalescence in the mixed valence state. Correlations between rate constants for ET and solvent properties including static dielectric constant, optical dielectric constant, the quantity 1/epsilonop - 1/epsilonS, microscopic solvent polarity, viscosity, cardinal rotational moments of inertia, and solvent relaxation times were examined. In the temperature study, the complexes displayed a sharp increase in the ket as the freezing points of the solvents methylene chloride and acetonitrile were approached. The solvent phase transition causes a localized-to-delocalized transition in the mixed valence ions and an acceleration in the rate of ET. This is explained in terms of decoupling the slower solvent motions involved in the frequency factor nuN which increases the value of nuN. The observed solvent and temperature dependence of the ket for these complexes is used in order to formulate a new definition for Robin-Day class II-III mixed valence compounds. Specifically, it is proposed that class II-III compounds are those for which thermodynamic properties of the solvent exert no control over ket, but the dynamic properties of the solvent still influence ket.  相似文献   

7.
8.
9.
Molecular rectangles having the form ([Re(CO)3]2(X)2)(2)-mu,mu'-(LL)2, where X is either a bridging alkoxide or phenylthiolate group and LL is 4,4'-bipyridine or pyrazine, are characterized by cofacial LL pairs that are in van der Waals contact across the "long" side of the rectangle. Cyclic voltammetry shows that the redox-accessible bridging ligands, LL, are reduced in sequential, one-electron reactions. The singly reduced rectangles represent an unusual type of mixed-valence compound in which the LL ligands themselves are the redox centers. Spectroelectrochemical measurements for mixed-valence forms of these rectangles reveal intense, asymmetric absorption bands in the near-infrared region, assigned as intervalence transitions. Electroabsorption (Stark spectroscopy) measurements reveal minute changes in dipole moment and therefore a lack of significant charge transfer upon intervalence excitation. Thus, the rectangles are unusual examples of class III (fully valence delocalized) molecular mixed-valence species that employ direct donor-orbital/acceptor-orbital overlap rather than covalent-bond-mediated superexchange to achieve the large electronic coupling strengths required for delocalization.  相似文献   

10.
Smith MD  Miller GJ 《Inorganic chemistry》2003,42(13):4165-4170
The new compound Ta(4)SI(11) has been prepared by direct reaction of the elements at 430 degrees C for 2 weeks in evacuated Pyrex ampules and characterized by single-crystal X-ray diffraction, X-ray photoelectron spectroscopy, magnetic susceptibility measurements, and semiempirical electronic structure calculations. Ta(4)SI(11) crystallizes with orthorhombic symmetry in space group Pmmn; a = 16.135(3) A, b = 3.813(1) A, c = 8.131(2) A, and Z = 1. The disordered structure involves two crystallographically distinct sites for Ta atoms, both of which are 50% occupied as well as a bridging anion site that is 50% S and 50% I. Magnetic susceptibility above 100 K gives micro (eff) = 1.53 micro (B) to suggest one unpaired electron per formula unit. X-ray photoelectron spectroscopy and extended Hückel calculations suggest that the structure consists of Ta(3) triangles and "isolated" Ta atoms, leading to the formulation (Ta(3))(9+)(Ta(4+))(S(2)(-))(I(-))(11) and we hypothesize that each Ta(3) is capped by a sulfur atom.  相似文献   

11.
12.
In a recent article Gopinathan and Jug have proposed a definition of atomic valency which had previously been given by Armstrong, Perkins and Stewart for closed shell molecules. The validity and interpretation of this definition for open shell systems is discussed. A new parameter for structural analysis, the free electron index, is presented.We want to acknowledge the computer time made available by Centro de Estudios Superiores para el Procesamiento de la Informatión (CESPI) de la Universidad National de La Plata and many useful suggestions made by the referees of this paper.  相似文献   

13.
The nonadiabatic photochemistry of the guanine molecule (2-amino-6-oxopurine) and some of its tautomers has been studied by means of the high-level theoretical ab initio quantum chemistry methods CASSCF and CASPT2. Accurate computations, based by the first time on minimum energy reaction paths, states minima, transition states, reaction barriers, and conical intersections on the potential energy hypersurfaces of the molecules lead to interpret the photochemistry of guanine and derivatives within a three-state model. As in the other purine DNA nucleobase, adenine, the ultrafast subpicosecond fluorescence decay measured in guanine is attributed to the barrierless character of the path leading from the initially populated 1(pi pi* L(a)) spectroscopic state of the molecule toward the low-lying methanamine-like conical intersection (gs/pi pi* L(a))CI. On the contrary, other tautomers are shown to have a reaction energy barrier along the main relaxation profile. A second, slower decay is attributed to a path involving switches toward two other states, 1(pi pi* L(b)) and, in particular, 1(n(O) pi*), ultimately leading to conical intersections with the ground state. A common framework for the ultrafast relaxation of the natural nucleobases is obtained in which the predominant role of a pi pi*-type state is confirmed.  相似文献   

14.
An ab initio theoretical study at the CASPT2 level is reported on minimum energy reaction paths, state minima, transition states, reaction barriers, and conical intersections on the potential energy hypersurfaces of two tautomers of adenine: 9H- and 7H-adenine. The obtained results led to a complete interpretation of the photophysics of adenine and derivatives, both under jet-cooled conditions and in solution, within a three-state model. The ultrafast subpicosecond fluorescence decay measured in adenine is attributed to the low-lying conical intersection (gs/pipi* La)(CI), reached from the initially populated 1(pipi* La) state along a path which is found to be barrierless only in 9H-adenine, while for the 7H tautomer the presence of an intermediate plateau corresponding to an NH2-twisted conformation may explain the absence of ultrafast decay in 7-substituted compounds. A secondary picosecond decay is assigned to a path involving switches towards two other states, 1(pipi* Lb) and 1(npi*), ultimately leading to another conical intersection with the ground state, (gs/npi*), with a perpendicular disposition of the amino group. The topology of the hypersurfaces and the state properties explain the absence of secondary decay in 9-substituted adenines in water in terms of the higher position of the 1(npi*) state and also that the 1(pipi* Lb) state of 7H-adenine is responsible for the observed fluorescence in water. A detailed discussion comparing recent experimental and theoretical findings is given. As for other nucleobases, the predominant role of a pipi*-type state in the ultrafast deactivation of adenine is confirmed.  相似文献   

15.
Mixed zirconium-titanium phosphates were synthesized by various methods and under various conditions. The effect of these conditions on the selectivity of synthetized samples toward the transition metal ions was investigated. It was found that the kd values are independent of the metal concentration and they give the selectivity order Zn2+>Cu2+ Co2+, Ni2+>Mn2+.  相似文献   

16.
The thermal behaviour and phase composition of mixed oxides obtained by oxidation of iron(II) hydroxide in the presence of Mg, Zn, Co, Cu and Ni, is investigated by thermogravimetry, and conventional and high-temperature X-ray diffractometry.  相似文献   

17.
18.
Energy dispersion X-ray diffraction (EDXD) was applied to investigate the structure of partly dehydrated mixed films formed by the phospholipid dimyristoyl phosphatidylcoline (DMPC) and any of the three diastereomers of the dicationic gemini surfactant (2S,3S)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium) butane dibromide. As the surfactant to lipid molar ratio (R(S/L)) increases, the gemini monotonically solubilizes the lipid bilayer promoting the formation of a cubic phase of space group Pmn segregating from the residual lamellar phase of the lipid. Finally, at R(S/)(L) = 1, the phase transition is complete. The mixed film at the highest surfactant to lipid molar ratio (R(S/L) = 2.3) was hydrated by a vapor saturated atmosphere. At full hydration, a cubic to lamellar phase transition occurs. Coarse grain dynamic investigations, carried out as a function of both the surfactant to lipid molar ratio and the number of water molecules for amphiphile unit, allowed us to elucidate the structure of the emerging cubic phase and the hydration-induced structural pathway of the cubic to lamellar phase transition observed by EDXD.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号