首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zero-quantum coherence generation and reconversion in magic-angle spinning solid-state NMR is analyzed. Two methods are discussed based on implementations using symmetry-based pulse sequences that utilize either isotropic J couplings or dipolar couplings. In either case, the decoupling of abundant proton spins plays a crucial role for the efficiency of the zero-quantum generation. We present optimized sequences for measuring zero-quantum single-quantum correlation spectra in solids, achieving an efficiency of 50% in ubiquitin. The advantages and disadvantages of zero-quantum single-quantum over single-quantum single-quantum correlation spectroscopy are explored, and similarities and differences with double-quantum single-quantum correlation spectroscopy are discussed. Finally, possible application of zero-quantum single-quantum experiments to polypeptides, where it can lead to better spectral resolution is investigated using ubiquitin, where we find high efficiency and high selectivity, but also increased line widths in the MQ dimension.  相似文献   

2.
A novel method for suppression of (13)C-(13)C diagonal peaks without sensitivity loss in three-dimensional HCCH TROSY-type NMR correlation experiments involving aromatic side chains in proteins (Pervushin et al., J. Am. Chem. Soc. 120, 6394-6400 (1998)) is presented. The key element is a spin-state-selective filter in the (13)C-(13)C mixing sequence with the dual effect of selecting the TROSY resonance in the preceding evolution period and interchanging TROSY and anti-TROSY resonances. The cross peaks are invariant to this filter but diagonal peak coherence gets concentrated on the anti-TROSY transition so that it can be eliminated by a (13)C --> (1)H TROSY transfer element. The new method is demonstrated using a (13)C,(15)N-labeled protein sample, RAP 18-112 (N-terminal domain of alpha(2)-macroglobulin receptor associated protein), at 750 MHz.  相似文献   

3.
In this article, we show the potential for utilizing proton-detected heteronuclear single quantum correlation (HSQC) NMR in rigid solids under ultra-fast magic angle spinning (MAS) conditions. The indirect detection of carbon-13 from coupled neighboring hydrogen nuclei provides a sensitivity enhancement of 3- to 4-fold in crystalline amino acids over direct-detected versions. Furthermore, the sensitivity enhancement is shown to be significantly larger for disordered solids that display inhomogeneously broadened carbon-13 spectra. Latrodectus hesperus (Black Widow) dragline silk is given as an example where the sample is mass-limited and the sensitivity enhancement for the proton-detected experiment is 8- to 13-fold. The ultra-fast MAS proton-detected HSQC solid-state NMR technique has the added advantage that no proton homonuclear decoupling is applied during the experiment. Further, well-resolved, indirectly observed carbon-13 spectra can be obtained in some cases without heteronuclear proton decoupling.  相似文献   

4.
The solid-state phase transitions of CuBr, CuI and NaNbO3 can be readily observed using 63Cu and 23Na high-temperature magic-angle spinning nuclear magnetic resonance spectroscopy. Temperature has large, linear effects on the peak maximum of 63Cu in each solid phase of CuBr and CuI, and there is large jump in shift across each phase transition. The 23Na MAS NMR peak intensities and the line widths in NaNbO3 also clearly show its high-temperature transition to the cubic phase. These data can be used to calibrate high-temperature MAS NMR probes up to 913 K, which is two hundred degrees higher than the commonly-used temperature calibration based on the chemical shift of 207Pb in Pb(NO3)2.  相似文献   

5.
The optimization of the coherence transfers involved in five, seven and nine-quantum versions of the recently discovered MQMAS technique, is analysed numerically. Data reported in this paper may serve as starting parameters for the experiment set up. An analysis of the intensity and resolution given by each type of experiment is performed, which confirms the need to use very high rf fields for MQ transfers. It follows that five-quantum is achievable rather easily but the use of seven and nine-quantum MAS experiments becomes increasingly difficult due to the demand for high rf power and decreasing sensitivity. The advantages of using the z-filter MQMAS method with respect to a two-pulse sequence are analysed. The method for qualitatively and quantitatively interpret the MQMAS spectra is described. The nature of the spinning side bands along the multiple quantum dimension is explained. It is shown that the rotor synchronization can be conveniently used to eliminate these side bands, but only for 3QMAS experiments. The use of the multiple-quantum method in combination with static samples and VAS, DAS and DOR techniques is finally discussed.  相似文献   

6.
A rigorous examination of the various multiple-quantum magic angle spinning sequences is carried out with reference to sensitivity enhancement in the isotropic dimension and the lineshapes of the corresponding MAS peaks in the anisotropic dimension. An echo efficiency parameter is defined here, which is shown to be an indicator of the performance aspects of the various sequences. This can be used in the design of further new experiments in this field. A consequence of such a systematic analysis has been the combination of a spin-lock pulse for excitation of multiple-quantum coherences and an amplitude-modulated pulse for their conversion to observable single-quantum coherences. This approach has resulted in an improved performance over other sequences with respect to both the anisotropic lineshapes and the isotropic intensities.  相似文献   

7.
A simple 13C MAS spin-echo experiment is applied to a partially 13C-labelled cellulose sample extracted from wood. 13C-13C J couplings are determined even though considerable chemical disorder leads to observed linewidths in the normal 1D 13C CP MAS spectrum which far exceed the J couplings. The fitting of the experimental data also allows the quantification of the degree of isotopic enrichment.  相似文献   

8.
This paper presents a general method for simulating the effect of chemical exchange on MAS NMR spectra of solid samples. The complication in MAS spectra is that the Hamiltonian itself is time-dependent, due to the spinning of the sample. The approach taken in this work is to use Floquet theory to convert the problem into a time-independent form, and then use established methods (used in liquid NMR simulations) to calculate the lineshape. Floquet theory has been admired for its elegance, but criticized for its computational inefficiencies. This is because it removes the time dependence of the system by expanding the problem in a Fourier-like series. This makes a relatively small, time-dependent calculation into a much larger time-independent one. Typically, we use twice as many Floquet blocks as there are spinning sidebands, so the increase in size is substantial. The problem that this creates stems from the fact that the usual Householder methods for diagonalizing a matrix scale as the cube of the size of the matrix. This would make a Floquet calculation prohibitively long. However, the Floquet matrix is inherently sparse, so sparse matrix methods can produce substantial computational savings. Also, fully diagonalizing a matrix is expensive, but converting the matrix to a tridiagonal form (using iterative Lanczos methods) is much cheaper. The use of the Lanczos methods makes the Floquet calculations feasible as a general method for systems of more than one spin. We show how to set up the full matrix describing chemical exchange in a spinning sample, but the details of how the Lanczos methods work are not included-they are described elsewhere. We then validate the theory by simulating the MAS spectra of dimethyl sulfone both with natural abundance (13)C and with methyl groups labeled with (13)C. The latter system has both dipolar and chemical shielding anisotropy terms contributing to the spectrum. Copyright 2000 Academic Press.  相似文献   

9.
The correlation times (τc) and cross relaxation rates of toluene, dimethylformamide, tetrahydrofuran, water-acetone and water-dioxane adsorbed on silica gel, alumina and charcoal were obtained by measurements of the integrated intensities of cross and diagonal peaks in their NOESY spectra. The (τc) of the above mentioned systems is in the range of 10?6?10?9 s, much longer than that in the liquid (10?12?10?14 s). It was found that intramolecular rotation of toluene adsorbed on charcoal is slower than that on SiO2, Al2O3 and the inversion of α and β protons in tetrahydrofuran is very fast (τc = 1.76×10?9 s). The cross relaxation plays an important role in the relaxation of molecules adsorbed on solid surfaces with low electron densities.  相似文献   

10.
Indirectly detected, through-bond NMR correlation spectra between (13)C and (1)H nuclei are reported for the first time in solid state. The capabilities of the new method are demonstrated using naturally abundant organic-inorganic mesoporous hybrid materials. The time performance is significantly better, almost by a factor of 10, than in the corresponding (13)C detected experiment. The proposed scheme represents a new analytical tool for studying other solid-state systems and the basis for the development of more advanced 2D and 3D correlation methods.  相似文献   

11.
Several existing methods permit measurement of the torsion angles phi, psi and chi in peptides and proteins with solid-state MAS NMR experiments. Currently, however, there is not an approach that is applicable to measurement of psi in the angular range -20 degree to -70 degree, commonly found in alpha-helical structures. Accordingly, we have developed a HCCN dipolar correlation MAS experiment that is sensitive and accurate in this regime. An initial REDOR driven (13)C'--(15)N dipolar evolution period is followed by the C' to C(alpha) polarization transfer and by Lee--Goldburg cross polarization recoupling of the (13)C(alpha)(1)H dipolar interaction. The difference between the effective (13)C(1)H and (13)C(15)N dipolar interaction strengths is balanced out by incrementing the (13)C--(15)N dipolar evolution period in steps that are a factor of R(R approximately omega(CH)/omega(CN)) larger than the (13)C--(1)H steps. The resulting dephasing curves are sensitive to variations in psi in the angular region associated with alpha-helical secondary structure. To demonstrate the validity of the technique, we apply it to N-formyl-[U-(13)C,(15)N] Met-Leu-Phe-OH (MLF). The value of psi extracted is consistent with the previous NMR measurements and close to that reported in diffraction studies for the methyl ester of MLF, N-formyl-[U-(13)C,(15)N]Met-Leu-Phe-OMe.  相似文献   

12.
We report new measurements of NMR parameters for 71Ga in gallium bearing oxide reference compounds, ranging from perfectly ordered systems to disordered crystalline structures and their aluminate counterparts. Static, MAS, and QPASS spectra are obtained at magnetic fields ranging from 7.0 to 18.8 T. With these results we enhance the previously established correlation between isotropic chemical shifts of 71Ga and 27Al and propose a correlation between gallium and aluminum electric field gradients (EFG). This correlation shows that the EFG at 71Ga sites are generally three times greater than those at equivalent 27Al sites.  相似文献   

13.
The differences in water suppressed VOSY of the brain between a live and dead mouse have been observed in experiments. In the water suppressed VOSY of the dead mouse brain some spectral lines near the water signal have disappeared but these spectral lines do exist in the water suppressed VOSY of the live mouse brain. The approach used to obtain the water suppressed VOSY of the mouse brain is termed phase-shift presaturation, whose water suppression factor, tested by a phantom of an aqueous solution of ethanol, is greater than 1000.  相似文献   

14.
Pulsed gradient simulated-echo (PGSE) NMR diffusion measurements provide a facile and accurate means for determining the self-diffusion coefficients for molecules over a wide range of sizes and conditions. The measurement of diffusion in solvents of low intrinsic viscosity is particularly challenging, due to the persistent presence of convection. Although convection can occur in most solvent systems at elevated temperatures, in lower viscosity solvents (e.g., short chain alkanes), convection may manifest itself even at ambient laboratory temperatures. In most circumstances, solvent suppression will also be required, and for solvents that have multiple resonances, effective suppression can likewise represent a substantial challenge. In this article, we report an NMR experiment that combines a double-stimulated echo PFG approach with a WET-based solvent suppression scheme that effectively and simultaneously address the issues of dynamic range and the deleterious effects of convection. The experiment described will be of general benefit to studies aimed at the characterization of diffusion of single molecules directly dissolved in low-viscosity solvents, and should also be of substantial utility in studies of supramolecular assemblies such as reverse-micelles dissolved in apolar solvents.  相似文献   

15.
16.
A new technique for detecting spectral spin diffusion in solids under MAS NMR conditions that is particularly well suited for accurately measuring cross-relaxation from minor spectral components is presented. The pulse sequence, SINK (Saturation Inter-Nuclear Kinetics), selectively saturates the magnetization of a minor spectral component with a series of rotor-synchronized DANTE pulse trains and monitors spin diffusion to other peaks with a non-selective 90° pulse. We have used SINK with 19F MAS NMR on samples of calcium fluorapatite doped with Sb3+ to measure spin diffusion between a weak peak at 68.6 ppm due to fluoride ions associated with Sb3+ and other peaks in the spectrum. The SINK experiment clearly demonstrates that spin diffusion from the former peak to the main resonance of fluorapatite at 64.0 ppm is faster than spin diffusion to a second antimony-related peak at 65.6 ppm. These results strengthen our previous conclusion that antimony(III) occupies a phosphate site in the apatite lattice, with an SbO33− group replacing a PO43− group. The SINK experiment also enables the detection of a “hidden” peak at approximately 62.9 ppm that is otherwise obscured by the intense main peak at 64.0 ppm.  相似文献   

17.
Static, magic angle spinning (MAS), variable angle spinning (VAS), dynamic angle spinning (DAS) and triple quantum magic angle spinning (3QMAS) NMR techniques were applied to separate and quantify oxygen signals from Al–O–Si and Si–O–Si sites of 17O-enriched samples of the mineral stilbite, a natural zeolite. DAS experiments showed that there was a distribution of quadrupolar coupling constants, asymmetry parameters and isotropic chemical shifts. Two methods were used to study the quantification problem of DAS and 3QMAS. Our results showed that DAS was quantitative. In 3QMAS, signal intensity from sites with larger quadrupolar coupling constants was reduced because of less efficient excitation. All techniques have shown a clear difference in rates of exchange between the two types of sites with interchannel H2O molecules.  相似文献   

18.
19.
Sum peaks, escape peaks, and diffraction peaks are considered artificial or spurious peaks in energy dispersive X‐ray spectrometry. Experimental examples are given, which showed that escape and diffraction peaks can add up to become sum peaks. These artificial peaks are not weak, and great care must be taken to differentiate them from peaks due to impurity or trace elements. The relationship between the intensity of a sum peak and the original peaks is illustrated using computer simulation as well as probability theory. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号