首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation was made of the influence of a macroscopic crack on the mechanical strength of NaCl, LiF, and CaCO3 single crystals exposed to pulsed laser irradiation. The probability of growth of the initial macrocrack being activated with optical breakdown of the sample is estimated. A mechanism is proposed for the growth of an initial macroscopic crack in which cavities, microcracks, and macrocracks formed as a result of the heating and burnout of absorbing inclusions combine with the initial crack. Zh. Tekh. Fiz. 68, 34–37 (December 1998)  相似文献   

2.
Continuous wave(CW) laser irradiation is employed to enhance the pulsed laser ablation of silicon and stainless steel(316 L)samples. Different surface temperatures generated by the CW laser irradiation are set as the initial working circumstance for the pulsed laser ablation. The diameter and depth of laser-ablated craters are measured to study threshold fluence, pulse incubation coefficient and ablation rate under different surface temperatures. Numerical simulation employing Heat Transfer in Solid and Deformed Geometry Interface modules in COMSOL is performed to estimate ablation rate theoretically based on Hertz-Knudsen equation. The realized crater-related data are analyzed to further obtain their dependences on surface temperature. The parametric and morphological studies indicate that the weakened plasma shielding effect and thermal diffusion in the ablated region induced by the CW laser irradiation lead to the enhanced pulsed laser ablation significantly.  相似文献   

3.
The regimes of irradiation using nanosecond laser pulses for creation of color images on stainless-steel and titanium surfaces upon laser engraving are studied. Parameters of radiation that correspond to the spectrum of resulting colors on the sample surface are experimentally determined. The spectral analysis of the irradiated area is performed and probe microscopy is used to study the surface relief. Complicated surface relief that results from irradiation indicates the contribution of several optical effects responsible for the surface color under laser engraving.  相似文献   

4.
Theoretical analysis of the influence of the temporal profile (rectangular, triangular, Gaussian) of the laser pulse on heating/cooling and phase transition velocities and quantity of ablated material was performed on the basis of a multifront Stephan problem. Modeling showed that material removal under stationary conditions (that correspond to long pulses) is entirely controlled by specific heat and material density, while in the case of transient regimes (short pulses) thermal conductivity and heat capacity play a predominant role. Interaction of the melting and evaporation fronts characterized by an evaporation front velocity far exceeding the melting front one is one of the examples of the transient nature of the phenomena influenced by the laser pulse parameters.  相似文献   

5.
Abstract

Irradiation of KI near 150 K with KrCl excimer laser irradiation (hv=5. 58 eV) produces V centers causing V2 and V3 bands. The two bands exhibit 100-type dichroism. In KI containing V centers, the 111 cm?1 Raman signal attributed to I3- molecular ions is observed. Under KrCl excimer laser irradiation at low temperatures, resonance Raman scattering effects have been also studied for KI, NaI and LiI.  相似文献   

6.
The gas immersion laser doping (GILD) technique requires the measurement of the fraction of incident light absorbed in the gas phase during the irradiation with a pulsed laser. Here we report the absorption of boron trichloride (BCl3) gas at the wavelength of a pulsed ArF excimer laser (=193 nm). We have determined the one-photon (1) and two-photon () absorption cross sections of this dopant gas for 193 nm. The values of 1 and are 3.6×10–20 cm2 and 9×10–45 cm4·s, respectively. However, the distinction between simultaneous and sequential absorption has not been possible. Based on these results, we have established a relationship which allows the calculation of the fraction of incident light absorbed as a function of incident intensity and gas pressure.  相似文献   

7.
Polyethylene welding by pulsed visible laser irradiation   总被引:1,自引:0,他引:1  
Laser welding of plastics is a relatively new process that induces locally a fast polymer heating. For most applications, the process involves directing a pulsed beam of visible light at the weld joint by going through one of the two parts. This is commonly referred to as “through transmission visible laser welding”. In this technique, the monochromatic visible light source uses a power ns pulsed laser in order to irradiate the joint through one part and the light is absorbed in the vicinity of the other part.In order to evaluate the mechanical resistance of the welded joint, mass quadrupole spectrometry, surface profilometry, microscopy techniques and mechanical shear tests were employed. The welding effect was investigated as a function of the laser irradiation time, nature of the polyethylene materials and temperature.  相似文献   

8.
An analytical model is derived to describe the stress mechanism in a thin film against the laser-induced damage threshold (LIDT) based on the thermal transfer equation. Different structures of high-reflection films at 355 nm are prepared to validate this model. LIDTs are found to have a linear relationship with stress. Furthermore, predictions from the simple model agree with the experiments.  相似文献   

9.
The photoelectric and electrical properties of high-resistivity p-like CdTe and Cd0.96Zn0.04Te single crystals and barrier structures on their base before and after laser irradiation in different conditions are studied. Irradiation of samples with nanosecond ruby laser pulses was carried out in two different ways. In the first case, the Cd(Zn)Te crystals were subjected to laser action directly from the surface and irradiation within a certain range of intensities resulted in a decrease in the surface recombination rate and increase in the photoconductivity signal. The surface region with a wider bandgap in CdZnTe crystals was formed. In the second case, the samples were irradiated from the side pre-coated with a relatively thick In dopant film and it caused rectification in the I-V characteristics as a result of laser-induced doping of the thin Cd(Zn)Te surface region and formation of a built-in p-n junction. The application of the fabricated M-p-n structured In/Cd(Zn)Te/Au diodes for X-ray and γ-ray detectors is discussed.  相似文献   

10.
Laser-induced modification at 355 nm of deuterated potassium dihydrogen phosphate(DKDP) crystals following exposure to nanosecond(ns) and sub-ns laser irradiation is investigated in order to probe the absorption mechanism in damage initiation. Laser damage resistance is greatly improved by sub-ns laser conditioning,whereas only a little improvement occurred after ns laser conditioning at the same laser fluence. Moreover, scattering and transmittance variations after the two types of laser conditioning indicate similar reduction of linear absorption. However, by contrast, large differences on nonlinear absorption modification are discovered using Z-scan measurement. This characteristic absorption modification by laser irradiation provides evidence that a nonlinear absorption mechanism plays a key role in damage initiation at 355 nm.  相似文献   

11.
Thermoelastic wave induced by pulsed laser heating   总被引:6,自引:0,他引:6  
In this work, a generalized solution for the thermoelastic plane wave in a semi-infinite solid induced by pulsed laser heating is developed. The solution takes into account the non-Fourier effect in heat conduction and the coupling effect between temperature and strain rate, which play significant roles in ultrashort pulsed laser heating. Based on this solution, calculations are conducted to study stress waves induced by nano-, pico-, and femtosecond laser pulses. It is found that with the same maximum surface temperature increase, a shorter pulsed laser induces a much stronger stress wave. The non-Fourier effect causes a higher surface temperature increase, but a weaker stress wave. Also, for the first time, it is found that a second stress wave is formed and propagates with the same speed as the thermal wave. The surface displacement accompanying thermal expansion shows a substantial time delay to the femtosecond laser pulse. On the contrary, surface displacement and heating occur simultaneously in nano- and picosecond laser heating. In femtosecond laser heating, results show that the coupling effect strongly attenuates the stress wave and extends the duration of the stress wave. This may explain the minimal damage in ultrashort laser materials processing. Received: 23 May 2000 / Accepted: 26 May 2000 / Published online: 20 September 2000  相似文献   

12.
Laser-diode pumped Q-switched ytterbium-doped switching time of acousto-optic modulator (AOM) fiber laser is studied experimentally by controlling the The characteristics of Q-switched pulses with different rise time of AOM regulated by the laser beam size along the window of AOM are presented. Meanwhile, the behaviors of Q-switched pulses are achieved by regulating the switching time of AOM. The singlerepetition-rate and half-repetition-rate phenomena are described and discussed. The experimental results confirm that the fiber laser with lower level inversion population can be more easily operated for half- repetition-rate generation.  相似文献   

13.
14.
Porous carbon dendrite has been prepared by irradiating graphite targets with 532 nm, 10 ns laser pulses. The prepared samples were characterized by means of scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The measurement results show that carbon dendrite structures with cluster diameter of 10 nm were obtained on the irradiated target surface in an inert gas atmosphere. The evolution of target surface morphology induced by different laser intensities was investigated. The formation mechanism of the dendrite structure has been discussed in detail. The laser intensity plays an important role in the formation of the nanostructures and there exists an optimum intensity to prepare the carbon dendrite.  相似文献   

15.
Energetic ions have been obtained irradiating a tungsten target with a Q-switched Nd:Yag laser, 1064?nm wavelength, 9?ns pulse width, 900?mJ maximum pulse energy and power density of the order of 1010?W/cm2. The laser-target interaction induces a strong metal etching with production of plasma in front of the target. The plasma contains neutrals and ions with high charge state. Time-of-flight measurements are presented for qualitative analysis of the ion production. A cylindrical electrostatic ion analyzer permits measuring of the yield of emitted ions, the charge state of detected ions and the ion energy distribution. Measurements indicate that, at a laser fluence of the order of 100?J/cm2, the charge state may reach 9+ and the ion energy reaches about 5?keV. The ion energy distribution is given as a function of the charge state. Experimental results indicate that an electrical field is developed along the normal to the plane of the target surface, which accelerates the ions up to high velocity. The ion velocity distributions follow a “shifted Maxwellian distribution”, which the author has corrected for the Coulomb interactions occurring inside the plasma.  相似文献   

16.
Ge diffusion into GaAs from thin evaporated layers as sources is reported. Irradiation with aQ-switched ruby laser gives rise ton-type diffused layers of a thickness from 240 to 710 Å. A strong compensation of the diffused layers, that cannot be removed by thermal annealing, was observed. From the present experimental results it can be inferred that the diffusion coefficient increases at the melting point by 5 to 6 orders of magnitude.  相似文献   

17.
激光电源脉冲功率切换电路稳定工作是电源可靠性的保证。电路参数选取直接影响晶闸管、二极管的工况,而晶闸管的良好工况是保证切换激光电源长期可靠运行的基本条件。基于PSCAD软件建立切换电路的仿真模型,重点仿真分析了阻容电路参数配置、限流电阻、并联晶闸管触发同步性对晶闸管和二极管的影响。仿真结果表明,电流上升率过大是晶闸管门极损坏的原因,关断支路中的反向过压是二极管损坏的原因。并针对实际电路,提出晶闸管二极管保护的优化配置方案。  相似文献   

18.
激光电源脉冲功率切换电路稳定工作是电源可靠性的保证。电路参数选取直接影响晶闸管、二极管的工况,而晶闸管的良好工况是保证切换激光电源长期可靠运行的基本条件。基于PSCAD软件建立切换电路的仿真模型,重点仿真分析了阻容电路参数配置、限流电阻、并联晶闸管触发同步性对晶闸管和二极管的影响。仿真结果表明,电流上升率过大是晶闸管门极损坏的原因,关断支路中的反向过压是二极管损坏的原因。并针对实际电路,提出晶闸管二极管保护的优化配置方案。  相似文献   

19.
The ZnO/Au nanocomposite formation involves synthesis of Au and ZnO colloidal solutions by 532 nm pulse laser ablation of metal targets in deionized water followed by laser irradiation of the mixed colloidal solution. The transmission electron microscope (TEM) and high-resolution transmission electron microscope (HRTEM) images show evolution of spherical particles into ZnO/Au nanonetworks with irradiation time. The formation mechanism of the nanonetwork can be explained on the basis of near resonance absorption of 532 nm irradiation by gold nanoparticles which can cause selective melting and fusion of gold nanoparticles to form network. The ZnO/Au nanocomposites show blue shift in the ZnO exciton absorption and red shift in the Au plasmon resonance absorption due to interfacial charge transfer.  相似文献   

20.
Cumulative nanosecond pulsed excimer laser irradiation of silicon produces an array of high-aspect-ratio microcolumns that protrude well above the initial surface. The growth of these microcolumns is strongly affected by the gas environment, being enhanced in air or in other oxygen-containing atmosphere. An array of very large and complex conical structures that also protrude above the surface is formed if the irradiation is performed in sulfur hexafluoride (SF6). Kinetics studies of microcolumn growth show that: (i) A certain number of pulses is required to initiate growth of microcolumns; (ii) column nucleation is inhomogeneous, taking place always at the edges of deep grooves or pits; (iii) growth is fast with the earlier pulses but slows down to a halt when the columns reach a certain length. These studies show that columns nucleate and grow by continuous influx of silicon with each laser pulse. It is proposed that the axial growth of microcolumns and cones is due to the deposition of atoms or clusters at their tips. The column/cone tips are melted during irradiation and act as preferred sites for deposition, resulting in a very high axial growth rate. The contribution of etching and ablation to the flux of silicon-rich vapor produced during irradiation is discussed. The mechanism of columnar growth is compared with the vapor-liquid-solid method to grow silicon whiskers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号