首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
[Ru(II)(F(20)-tpp)(CO)] (1, F(20)-tpp=meso-tetrakis(pentafluorophenyl)porphyrinato dianion) was covalently attached to poly(ethylene glycol) (PEG) through the reaction of 1 with PEG and sodium hydride in DMF. The water-soluble PEG-supported ruthenium porphyrin (PEG-1) is an efficient catalyst for 2,6-Cl(2)pyNO oxidation and PhI==NTs aziridination/amidation of hydrocarbons, and intramolecular amidation of sulfamate esters with PhI(OAc)(2). Oxidation of PEG-1 by m-CPBA in CH(2)Cl(2), dioxane, or water afforded a water-soluble PEG-supported dioxoruthenium(VI) porphyrin (PEG-2), which could react with hydrocarbons to give oxidation products in up to 80 % yield. The behavior of the two PEG-supported ruthenium porphyrin complexes in water was probed by NMR spectroscopy and dynamic light-scattering measurements. PEG-2 is remarkably stable to water. The second-order rate constants (k(2)) for the oxidation of styrene and ethylbenzene by PEG-2 in dioxane-water increase with water content, and the k(2) values at a water content of 70 % or 80 % are up to 188 times that obtained in ClCH(2)CH(2)Cl.  相似文献   

2.
[Ru(II)(por)(PH(n)Ph(3-n))2], [Os(II)(por)(CO)(PH(n)Ph(3-n))] (n=1, 2), and [Os(II)(F20-tpp){P(OH)Ph2}(PHPh2)] (F20-tpp=5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato dianion) were prepared from the reaction of [M(II)(por)(CO)] (M=Ru, Os) or [Os(VI)(por)O2] with the respective primary/secondary phosphane and characterized by 1H NMR, 31P NMR, UV/Vis, and IR spectroscopy, mass spectrometry, and elemental analysis. The reaction of [Os(VI)(por)O2] with PHPh2 also gave minor amounts of [Os(II)(por){P(OH)Ph2}2]. [Ru(II)(F20-tpp)(PH2Ph)2] exhibits a remarkable stability toward air and shows a reversible metal-centered oxidation couple at E(1/2)=0.39 V versus [Cp2Fe](+/0) in the cyclic voltammogram. The structures of [Ru(II)(F20-tpp)(PH2Ph)2] x 2CH2Cl2, [Ru(II)(4-Cl-tpp)(PHPh2)2] x 2CH2Cl2 (4-Cl-tpp=5,10,15,20-tetrakis(p-chlorophenyl)porphyrinato dianion), [Ru(II)(F20-tpp)(PHPh2)2], and [Os(II)(F20-tpp){P(OH)Ph2}2] were determined by X-ray crystallography and feature Ru-P distances of 2.3397(11)-2.3609(9) A and an Os-P distance of 2.369(2) A.  相似文献   

3.
beta-Halogenated dioxoruthenium(VI) porphyrin complexes [Ru(VI)(F(28)-tpp)O(2)] [F(28)-tpp=2,3,7,8,12,13, 17,18-octafluoro-5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato(2-)] and [Ru(VI)(beta-Br(8)-tmp)O(2)] [beta-Br(8)-tmp=2,3,7,8,12,13,17,18-octabromo-5,10,15,20- tetrakis(2,4,6-trimethylphenyl)porphyrinato(2-)] were prepared from reactions of [Ru(II)(por)(CO)] [por=porphyrinato(2-)] with m-chloroperoxybenzoic acid in CH(2)Cl(2). Reactions of [Ru(VI)(por)O(2)] with excess PPh(3) in CH(2)Cl(2) gave [Ru(II)(F(20)-tpp)(PPh(3))(2)] [F(20)-tpp=5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato(2-)] and [Ru(II)(F(28)-tpp)(PPh(3))(2)]. The structures of [Ru(II)(por)(CO)(H(2)O)] and [Ru(II)(por)(PPh(3))(2)] (por=F(20)-tpp, F(28)-tpp) were determined by X-ray crystallography, revealing the effect of beta-fluorination of the porphyrin ligand on the coordination of axial ligands to ruthenium atom. The X-ray crystal structure of [Ru(VI)(F(20)-tpp)O(2)] shows a Ru=O bond length of 1.718(3) A. Electrochemical reduction of [Ru(VI)(por)O(2)] (Ru(VI) to Ru(V)) is irreversible or quasi-reversible, with the E(p,c)(Ru(VI/V)) spanning -0.31 to -1.15 V versus Cp(2)Fe(+/0). Kinetic studies were performed for the reactions of various [Ru(VI)(por)O(2)], including [Ru(VI)(F(28)-tpp)O(2)] and [Ru(VI)(beta-Br(8)-tmp)O(2)], with para-substituted styrenes p-X-C(6)H(4)CH=CH(2) (X=H, F, Cl, Me, MeO), cis- and trans-beta-methylstyrene, cyclohexene, norbornene, ethylbenzene, cumene, 9,10-dihydroanthracene, xanthene, and fluorene. The second-order rate constants (k(2)) obtained for the hydrocarbon oxidations by [Ru(VI)(F(28)-tpp)O(2)] are up to 28-fold larger than by [Ru(VI)(F(20)-tpp)O(2)]. Dual-parameter Hammett correlation implies that the styrene oxidation by [Ru(VI)(F(28)-tpp)O(2)] should involve rate-limiting generation of a benzylic radical intermediate, and the spin delocalization effect is more important than the polar effect. The k(2) values for the oxidation of styrene and ethylbenzene by [Ru(VI)(por)O(2)] increase with E(p,c)(Ru(VI/V)), and there is a linear correlation between log k(2) and E(p,c)(Ru(VI/V)). The small slope (approximately 2 V(-1)) of the log k(2) versus E(p,c)(Ru(VI/V)) plot suggests that the extent of charge transfer is small in the rate-determining step of the hydrocarbon oxidations. The rate constants correlate well with the C-H bond dissociation energies, in favor of a hydrogen-atom abstraction mechanism.  相似文献   

4.
Ruthenium porphyrins [Ru(F(20)-TPP)(CO)] (F(20)-TPP = 5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato dianion) and [Ru(Por*)(CO)] (Por = 5,10,15,20-tetrakis[(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracen-9-yl]porphyrinato dianion) catalyzed intramolecular amidation of sulfamate esters p-X-C(6)H(4)(CH(2))(2)OSO(2)NH(2) (X = Cl, Me, MeO), XC(6)H(4)(CH(2))(3)OSO(2)NH(2) (X = p-F, p-MeO, m-MeO), and Ar(CH(2))(2)OSO(2)NH(2) (Ar = naphthalen-1-yl, naphthalen-2-yl) with PhI(OAc)(2) to afford the corresponding cyclic sulfamidates in up to 89% yield with up to 100% substrate conversion; up to 88% ee was attained in the asymmetric intramolecular amidation catalyzed by [Ru(Por)(CO)]. Reaction of [Ru(F(20)-TPP)(CO)] with PhI[double bond]NSO(2)OCH(2)CCl(3) (prepared by treating the sulfamate ester Cl(3)CCH(2)OSO(2)NH(2) with PhI(OAc)(2)) afforded a bis(imido)ruthenium(VI) porphyrin, [Ru(VI)(F(20)-TPP)(NSO(2)OCH(2)CCl(3))(2)], in 60% yield. A mechanism involving reactive imido ruthenium porphyrin intermediate was proposed for the ruthenium porphyrin-catalyzed intramolecular amidation of sulfamate esters. Complex [Ru(F(20)-TPP)(CO)] is an active catalyst for intramolecular aziridination of unsaturated sulfonamides with PhI(OAc)(2), producing corresponding bicyclic aziridines in up to 87% yield with up to 100% substrate conversion and high turnover (up to 2014).  相似文献   

5.
Huang JS  Yu GA  Xie J  Wong KM  Zhu N  Che CM 《Inorganic chemistry》2008,47(20):9166-9181
Reduction of [Fe(III)(Por)Cl] (Por = porphyrinato dianion) with Na2S2O4 followed by reaction with excess PH2Ph, PH2Ad, or PHPh2 afforded [Fe(II)(F20-TPP)(PH2Ph)2] (1a), [Fe(II)(F20-TPP)(PH2Ad)2] (1b), [Fe(II)(F20-TPP)(PHPh2)2] (2a), and [Fe(II)(2,6-Cl2TPP)(PHPh2)2] (2b). Reaction of [Ru(II)(Pc)(DMSO)2] (Pc = phthalocyaninato dianion) with PH2Ph or PHPh2 gave [Ru(II)(Pc)(PH2Ph)2] (3a) and [Ru(II)(Pc)(PHPh2)2] (4). [Ru(II)(Pc)(PH2Ad)2] (3b) and [Ru(II)(Pc)(PH2Bu(t))2] (3c) were isolated by treating a mixture of [Ru(II)(Pc)(DMSO)2] and O=PCl2Ad or PCl2Bu(t) with LiAlH4. Hydrophosphination of CH2=CHR (R = CO2Et, CN) with [Ru(II)(F20-TPP)(PH2Ph)2] or [Ru(II)(F20-TPP)(PHPh2)2] in the presence of (t)BuOK led to the isolation of [Ru(II)(F20-TPP)(P(CH2CH2R)2Ph)2] (R = CO2Et, 5a; CN, 5b) and [Ru(II)(F20-TPP)(P(CH2CH2R)Ph2)2] (R = CO2Et, 6a; CN, 6b). Similar reaction of 3a with CH2=CHCN or MeI gave [Ru(II)(Pc)(P(CH2CH2CN)2Ph)2] (7) or [Ru(II)(Pc)(PMe2Ph)2] (8). The reactions of 4 with CH2=CHR (R = CO2Et, CN, C(O)Me, P(O)(OEt)2, S(O)2Ph), CH2=C(Me)CO2Me, CH(CO2Me)=CHCO2Me, MeI, BnCl, and RBr (R = (n)Bu, CH2=CHCH2, MeC[triple bond]CCH2, HC[triple bond]CCH2) in the presence of (t)BuOK afforded [Ru(II)(Pc)(P(CH2CH2R)Ph2)2] (R = CO2Et, 9a; CN, 9b; C(O)Me, 9c; P(O)(OEt)2, 9d; S(O)2Ph, 9e), [Ru(II)(Pc)(P(CH2CH(Me)CO2Me)Ph2)2] (9f), [Ru(II)(Pc)(P(CH(CO2Me)CH2CO2Me)Ph2)2] (9g), and [Ru(II)(Pc)(PRPh2)2] (R = Me, 10a; Bu(n), 10b; Bn, 10c; CH2CH=CH2, 10d; CH2C[triple bond]CMe, 10e; CH=C=CH2, 10f). X-ray crystal structure determinations revealed Fe-P distances of 2.2597(9) (1a) and 2.309(2) A (2bx 2 CH2Cl2) and Ru-P distances of 2.3707(13) (3b), 2.373(2) (3c), 2.3478(11) (4), and 2.3754(10) A (5b x 2 CH2Cl2). Both the crystal structures of 3b and 4 feature intermolecular C-H...pi interactions, which link the molecules into 3D and 2D networks, respectively.  相似文献   

6.
[Ru(VI)(TMP)(NSO2R)2] (SO2R = Ms, Ts, Bs, Cs, Ns; R = p-C6H4OMe, p-C6H4Me, C6H5, p-C6H4Cl, p-C6H4NO2, respectively) and [Ru(VI)(Por)(NTs)2] (Por = 2,6-Cl2TPP, F20-TPP) were prepared by the reactions of [Ru(II)(Por)(CO)] with PhI=NSO2R in CH2Cl2. These complexes exhibit reversible Ru(VI/V) couple with E(1/2) = -0.41 to -0.12 V vs Cp2Fe(+/0) and undergo imido transfer reactions with styrenes, norbornene, cis-cyclooctene, indene, ethylbenzenes, cumene, 9,10-dihydroanthracene, xanthene, cyclohexene, toluene, and tetrahydrofuran to afford aziridines or amides in up to 85% yields. The second-order rate constants (k2) of the aziridination/amidation reactions at 298 K were determined to be (2.6 +/- 0.1) x 10(-5) to 14.4 +/- 0.6 dm3 mol(-1) s(-1), which generally increase with increasing Ru(VI/V) reduction potential of the imido complexes and decreasing C-H bond dissociation energy (BDE) of the hydrocarbons. A linear correlation was observed between log k' (k' is the k2 value divided by the number of reactive hydrogens) and BDE and between log k2 and E(1/2)(Ru(VI/V)); the linearity in the former case supports a H-atom abstraction mechanism. The amidation by [Ru(VI)(TMP)(NNs)2] reverses the thermodynamic reactivity order cumene > ethylbenzene/toluene, with k'(tertiary C-H)/k'(secondary C-H) = 0.2 and k'(tertiary C-H)/k'(primary C-H) = 0.8.  相似文献   

7.
Leung SK  Huang JS  Zhu N  Che CM 《Inorganic chemistry》2003,42(22):7266-7272
Reactions of dioxoosmium(VI) porphyrins [Os(VI)(Por)O(2)] with excess 1,1-diphenylhydrazine in tetrahydrofuran at ca. 55 degrees C for 15 min afforded bis(hydrazido(1-))osmium(IV) porphyrins [Os(IV)(Por)(NHNPh(2))(2)] (1a, Por = TPP (meso-tetraphenylporphyrinato dianion); 1b, Por = TTP (meso-tetrakis(p-tolyl)porphyrinato dianion)), hydroxo(amido)osmium(IV) porphyrins [Os(IV)(Por)(NPh(2))(OH)] (2a, Por = TPP; 2b, Por = TTP), and bis(hydrazido(2-))osmium(VI) porphyrin [Os(VI)(Por)(NNPh(2))(2)] (3c, Por = TMP (meso-tetramesitylporphyrinato dianion)). The same reaction under harsher conditions (in refluxing tetrahydrofuran for ca. 1 h) gave a nitridoosmium(VI) porphyrin, [Os(VI)(Por)(N)(OH)] (4b, Por = TTP). Oxidation of 1a,b with bromine in dichloromethane afforded bis(hydrazido(2-)) complexes [Os(VI)(TPP)(NNPh(2))(2)] (3a) and [Os(VI)(TTP)(NNPh(2))(2)] (3b), respectively. All the new osmium porphyrins were identified by (1)H NMR, IR, and UV-vis spectroscopy and mass spectrometry; the structure of 2b was determined by X-ray crystallography (Os-NPh(2) = 1.944(6) A, Os-OH = 1.952(5) A).  相似文献   

8.
A dichlororuthenium(IV) complex of 5,10,15,20-tetrakis[(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-octahydro-1,2:5,8-dimethanoanthrance-9-yl]porphyrin, [Ru(IV)(D(4)-Por)Cl(2)] (1), was prepared by heating [Ru(II)(D(4)-Por)(CO)(MeOH)] (2) in refluxing CCl(4). Complex 1 is characterized by (1)H NMR (paramagnetically shifted pyrrolic protons at delta(H) = -52.3 ppm), FAB-mass spectroscopies, and magnetic susceptibility measurement (mu(eff) = 3.1 mu(B)). The ruthenium complex exhibits remarkable catalytic activity toward enantioselective alkene epoxidation using 2,6-dichloropyridine N-oxide (Cl(2)pyNO) as terminal oxidant. The Ru(IV)-catalyzed styrene epoxidation is achieved within 2 h (versus 48 h for the 2-catalyzed reaction), and optically active styrene oxide was obtained in 69% ee and 84% yield (875 turnovers). Likewise, substituted styrenes and some conjugated cis-disubstituted alkenes (e.g., cis-beta-methylstyrene, cis-1-phenyl-3-penten-1-yne, 1,2-dihydronaphthalene, and 2,2-dimethylchromenes) are converted effectively to their organic epoxides in 50-80% ee under the Ru(IV)-catalyzed conditions, and more than 850 turnovers of epoxides have been attained. When subjecting 1 to four repetitive uses by recharging the reaction mixture with Cl(2)pyNO and styrene, styrene oxide was obtained in a total of 2190 turnovers and 69% ee. UV-vis and ESI-mass spectral analysis of the final reaction mixture revealed that a ruthenium-carbonyl species could have been formed during the catalytic reaction, leading to the apparent catalyst deactivation. We prepared a heterogeneous chiral ruthenium porphyrin catalyst by immobilizing 1 into sol-gel matrix. The heterogeneous catalyst is highly active toward asymmetric styrene epoxidation producing styrene oxide in 69% ee with up to 10,800 turnovers being achieved. The loss of activity of the Ru/sol-gel catalyst is ascribed to catalyst leaching and/or deactivation. On the basis of Hammett correlation (rho(+) = -1.62, R = 0.99) and product analysis, a dioxoruthenium(VI) porphyrin intermediate is not favored.  相似文献   

9.
Reactions of Ru(2)(O(2)CMe)(4)Cl with two formamidines, HDXyl(2,6)F = N,N'-di(2,6-xylyl)formamidine and HDAniF = N,N'-di(p-anisyl)formamidine, have been investigated with the idea of synthesizing compounds with a mixed set of ligands having different labilities to be used as precursors of paramagnetic, higher-order assemblies. Depending on the formamidine and the reaction conditions, several Ru(2)(5+) compounds of the type Ru(2)(O(2)CMe)(4)(-)(n)(DArF)(n)Cl (DArF = anion of an N,N'-diarylformamidine) have been isolated. With the bulky formamidine HXyl(2,6)F, the compounds Ru(2)(O(2)CMe)(3)(DXyl(2,6)F)Cl (1) and trans-Ru(2)(O(2)CMe)(2)(DXyl(2,6)F)(2)Cl (2) were obtained. From reactions with appropriate amounts of HDAniF in THF and in the presence of NEt(3) and LiCl, complexes of the general type Ru(2)(O(2)CMe)(4)(-)(n)(DArF)(n)Cl (n = 1-4) were selectively obtained. For n = 2, only the cis isomer was obtained. The choice of solvent in reactions of Ru(2)(O(2)CMe)(4)Cl and HDAniF is of great importance. Toluene favored the formation of the fully substituted Ru(2)(5+) complex Ru(2)(DAniF)(4)Cl (3), whereas MeOH resulted in a disproportionation reaction that gave the edge-sharing bioctahedral Ru(3+)Ru(3+) complex [trans-Ru(2)(mu-OMe)(2)(mu-O(2)CMe)(2)(HDAniF)(4)]Cl(2) (6) and the Ru(2)(4+) complex Ru(2)(DAniF)(4) (7). Complexes 6 and 7 with an Ru(2)(6+) and Ru(2)(4+) core, respectively, are diamagnetic, whereas all Ru(2)(5+) complexes are paramagnetic with sigma(2)pi(4)delta(2)(pi*delta*)(3) ground-state electronic configurations and large zero-field splitting contributions. All compounds show rich and complex electrochemical behavior.  相似文献   

10.
Chen WZ  Ren T 《Inorganic chemistry》2006,45(20):8156-8164
A high-yield synthesis of mixed-bridging-ligand Ru2 compounds, Ru2(D(3,5-Cl2Ph)F)(4-n)(OAc)nCl [n = 1 (1) and 2 (2)] was developed, where D(3,5-Cl2Ph)F is bis(3,5-dichlorophenyl)formamidinate. The acetate ligands in 1 and 2 can be quantitatively displaced with DMBA-I to yield Ru2(D(3,5-Cl2Ph)F)3(DMBA-I)Cl (3) and Ru2(D(3,5-Cl2Ph)F)2(DMBA-I)2Cl (4), respectively, where DMBA-I is N,N'-dimethyl-4-iodobenzamidinate. When compound 2 was treated with 1 equiv of HDMBA-I, a unique Ru2 compound containing three different types of bidentate bridging ligands, cis-Ru2(D(3,5-Cl2Ph)F)2(DMBA-I)(OAc)Cl (5), was obtained. Subsequent reactions between 3/4 and (trimethylsilyl)acetylene under Sonogashira coupling conditions resulted in Ru2(D(3,5-Cl2Ph)F)(4-n)(DMBA-C[triple bond]CSiMe3)nCl [n = 1 (6) and 2 (8)] in excellent yields, which were converted to the corresponding bis(phenylacetylide) compounds Ru2(D(3,5-Cl2Ph)F)(4-n)(DMBA-C[triple bond]CSiMe3)n(C[triple bond]CPh)2 [n = 1 (7) and 2 (9)]. Structural studies of several compounds provided insights about the change in Ru2 coordination geometry upon the displacement of bridging and axial ligands. Voltammetric studies of these compounds revealed rich redox characteristics in all Ru2 compounds reported and a minimal electronic perturbation upon the peripheral Sonogashira modification.  相似文献   

11.
A wide variety of ruthenium porphyrin carbene complexes, including [Ru(tpfpp)(CR(1)R(2))] (CR(1)R(2) = C(p-C(6)H(4)Cl)(2) 1 b, C(p-C(6)H(4)Me)(2) 1 c, C(p-C(6)H(4)OMe)(2) 1 d, C(CO(2)Me)(2) 1 e, C(p-C(6)H(4)NO(2))CO(2)Me 1 f, C(p-C(6)H(4)OMe)CO(2)Me 1 g, C(CH==CHPh)CO(2)CH(2)(CH==CH)(2)CH(3) 1 h), [Ru(por)(CPh(2))] (por=tdcpp 2 a, 4-Br-tpp 2 b, 4-Cl-tpp 2 c, 4-F-tpp 2 d, tpp 2 e, ttp 2 f, 4-MeO-tpp 2 g, tmp 2 h, 3,4,5-MeO-tpp 2 i), [Ru(por)[C(Ph)CO(2)Et]] (por=tdcpp 2 j, tmp 2 k), [Ru(tpfpp)(CPh(2))(L)] (L = MeOH 3 a, EtSH 3 b, Et(2)S 3 c, MeIm 3 d, OPPh(3) 3 e, py 3 f), and [Ru(tpfpp)[C(Ph)CO(2)R](MeOH)] (R = CH(2)CH==CH(2) 4 a, Me 4 b, Et 4 c), were prepared from the reactions of [Ru(por)(CO)] with diazo compounds N(2)CR(1)R(2) in dichloromethane and, for 3 and 4, by further treatment with reagents L. A similar reaction of [Os(tpfpp)(CO)] with N(2)CPh(2) in dichloromethane followed by treatment with MeIm gave [Os(tpfpp)(CPh(2))(MeIm)] (3 d-Os). All these complexes were characterized by (1)H NMR, (13)C NMR, and UV/Vis spectroscopy, mass spectrometry, and elemental analyses. X-ray crystal structure determinations of 1 d, 2 a,i, 3 a, b, d, e, 4 a-c, and 3 d-Os revealed Ru==C distances of 1.806(3)-1.876(3) A and an Os==C distance of 1.902(3) A. The structure of 1 d in the solid state features a unique "bridging" carbene ligand, which results in the formation of a one-dimensional coordination polymer. Cyclic voltammograms of 1 a-c, g, 2 a-d, g-k, 3 b-d, 4 a, b, and 3 d-Os show a reversible oxidation couple with E(1/2) values in the range of 0.06-0.65 V (vs Cp(2)Fe(+/0)) that is attributable to a metal-centered oxidation. The influence of carbene substituents, porphyrin substituents, and trans-ligands on the Ru==C bond was examined through comparison of the chemical shifts of the pyrrolic protons in the porphyrin macrocycles ((1)H NMR) and the M==C carbon atoms ((13)C NMR), the potentials of the metal-centered oxidation couples, and the Ru==C distances among the various ruthenium porphyrin carbene complexes. A direct comparison among iron, ruthenium, and osmium porphyrin carbene complexes is made.  相似文献   

12.
[FeIII(F20‐tpp)Cl] (F20‐tpp=meso‐tetrakis(pentafluorophenyl)porphyrinato dianion) is an effective catalyst for imido/nitrene insertion reactions using sulfonyl and aryl azides as nitrogen source. Under thermal conditions, aziridination of aryl and alkyl alkenes (16 examples, 60–95 % yields), sulfimidation of sulfides (11 examples, 76–96 % yields), allylic amidation/amination of α‐methylstyrenes (15 examples, 68–83 % yields), and amination of saturated C? H bonds including that of cycloalkanes and adamantane (eight examples, 64–80 % yields) can be accomplished by using 2 mol % [FeIII(F20‐tpp)Cl] as catalyst. Under microwave irradiation conditions, the reaction time of aziridination (four examples), allylic amination (five examples), sulfimidation (two examples), and amination of saturated C? H bonds (three examples) can be reduced by up to 16‐fold (24–48 versus 1.5–6 h) without significantly affecting the product yield and substrate conversion.  相似文献   

13.
Reactions of [Fe(TPFPP)] (TPFPP = meso-tetrakis(pentafluorophenyl)porphyrinato dianion) with diazo compounds N(2)C(Ph)R (R = Ph, CO(2)Et, CO(2)CH(2)CH=CH(2)) afforded [Fe(TPFPP)(C(Ph)R)] (R = Ph (1), CO(2)Et (2), CO(2)CH(2)CH=CH(2) (3)) in 65-70% yields. Treatment of 1 with N-methylimidazole (MeIm) gave the adduct [Fe(TPFPP)(CPh(2))(MeIm)] (4) in 65% yield. These new iron porphyrin carbene complexes were characterized by NMR and UV-vis spectroscopy, mass spectrometry, and elemental analyses. X-ray crystal structure determinations of 1.0.5C(6)H(6).0.5CH(2)Cl(2) and 4 reveal Fe=CPh(2) bond lengths of 1.767(3) (1) and 1.827(5) A (4), together with large ruffling distortions of the TPFPP macrocycle. Complexes 2 and 4 are reactive toward styrene, affording the corresponding cyclopropanes in 82 and 53% yields, respectively. Complex 1 is an active catalyst for both intermolecular cyclopropanation of styrenes with ethyl diazoacetate and intramolecular cyclopropanation of allylic diazoacetates. Reactions of 2 and 4 with cyclohexene or cumene produced allylic or benzylic C-H insertion products in up to 83% yield.  相似文献   

14.
Huang JS  Leung SK  Zhou ZY  Zhu N  Che CM 《Inorganic chemistry》2005,44(11):3780-3788
Reaction of dioxoruthenium(VI) porphyrins [Ru(VI)(Por)O2] with arylimine HN=CPh2 in dichloromethane afforded bis(methyleneamido)ruthenium(IV) porphyrins [Ru(IV)(Por)(N=CPh2)2] for Por = 4-Cl-TPP and TMP; (methyleneamido)hydroxoruthenium(IV) porphyrins [Ru(IV)(Por)(N=CPh2)(OH)] for Por = TPP and TTP; and bis(arylimine)ruthenium(II) porphyrins [Ru(II)(Por)(HN=CPh2)2] for Por = 3,5-Cl2TPP and 3,5-(CF3)2TPP. In dichloromethane solution exposed to air, complex [Ru(II)(3,5-Cl2TPP)(HN=CPh2)2] underwent oxidative deprotonation to form [Ru(IV)(3,5-Cl2TPP)(N=CPh2)2]. The new ruthenium porphyrins were identified by 1H NMR, UV-vis, IR, and mass spectroscopy, along with elemental analysis. X-ray crystal structure determinations of [Ru(IV)(4-Cl-TPP)(N=CPh2)2], [Ru(IV)(TPP)(N=CPh2)(OH)], and [Ru(II)(3,5-(CF3)2TPP)(HN=CPh2)2] revealed the Ru-N(methyleneamido) or Ru-N(arylimine) distances of 1.897(5) A (average), 1.808(4) A, and 2.044(2) A (average), respectively.  相似文献   

15.
Ruthenium(II)-acetonitrile complexes having η(3)-tris(2-pyridylmethyl)amine (TPA) with an uncoordinated pyridine ring and diimine such as 2,2'-bipyridine (bpy) and 2,2'-bipyrimidine (bpm), [Ru(II)(η(3)-TPA)(diimine)(CH(3)CN)](2+), reacted with m-chloroperbenzoic acid to afford corresponding Ru(II)-acetonitrile complexes having an uncoordinated pyridine-N-oxide arm, [Ru(II)(η(3)-TPA-O)(diimine)(CH(3)CN)](2+), with retention of the coordination environment. Photoirradiation of the acetonitrile complexes having diimine and the η(3)-TPA with the uncoordinated pyridine-N-oxide arm afforded a mixture of [Ru(II)(TPA)(diimine)](2+), intermediate-spin (S = 1) Ru(IV)-oxo complex with uncoordinated pyridine arm, and intermediate-spin Ru(IV)-oxo complex with uncoordinated pyridine-N-oxide arm. A Ru(II) complex bearing an oxygen-bound pyridine-N-oxide as a ligand and bpm as a diimine ligand was also obtained, and its crystal structure was determined by X-ray crystallography. Femtosecond laser flash photolysis of the isolated O-coordinated Ru(II)-pyridine-N-oxide complex has been investigated to reveal the photodynamics. The Ru(IV)-oxo complex with an uncoordinated pyridine moiety was alternatively prepared by reaction of the corresponding acetonitrile complex with 2,6-dichloropyridine-N-oxide (Cl(2)py-O) to identify the Ru(IV)-oxo species. The formation of Ru(IV)-oxo complexes was concluded to proceed via intermolecular oxygen atom transfer from the uncoordinated pyridine-N-oxide to a Ru(II) center on the basis of the results of the reaction with Cl(2)py-O and the concentration dependence of the consumption of the starting Ru(II) complexes having the uncoordinated pyridine-N-oxide moiety. Oxygenation reactions of organic substrates by [Ru(II)(η(3)-TPA-O)(diimine)(CH(3)CN)](2+) were examined under irradiation (at 420 ± 5 nm) and showed selective allylic oxygenation of cyclohexene to give cyclohexen-1-ol and cyclohexen-1-one and cumene oxygenation to afford cumyl alcohol and acetophenone.  相似文献   

16.
Reaction of [Ru (VI)(N)(L (1))(MeOH)] (+) (L (1) = N, N'-bis(salicylidene)- o-cyclohexylenediamine dianion) with excess pyridine in CH 3CN produces [Ru (III)(L (1))(py) 2] (+) and N 2. The proposed mechanism involves initial equilibrium formation of [Ru (VI)(N)(L (1))(py)] (+), which undergoes rapid N...N coupling to produce [(py)(L (1))Ru (III) N N-Ru (III)(L (1))(py)] (2+); this is followed by pyridine substituion to give the final product. This ligand-induced N...N coupling of Ru (VI)N is utilized in the preparation of a series of new ruthenium(III) salen complexes, [Ru (III)(L)(X) 2] (+/-) (L = salen ligand; X = H 2O, 1-MeIm, py, Me 2SO, PhNH 2, ( t )BuNH 2, Cl (-) or CN (-)). The structures of [Ru (III)(L (1))(NH 2Ph) 2](PF 6) ( 6), K[Ru (III)(L (1))(CN) 2] ( 9), [Ru (III)(L (2))(NCCH 3) 2][Au (I)(CN) 2] ( 11) (L (2) = N, N'-bis(salicylidene)- o-phenylenediamine dianion) and [N ( n )Bu 4][Ru (III)(L (3))Cl 2] ( 12) (L (3) = N, N'-bis(salicylidene)ethylenediamine dianion) have been determined by X-ray crystallography.  相似文献   

17.
Thermolysis of [Ru(AsPh3)3(CO)H2] with the N-aryl heterocyclic carbenes (NHCs) IMes (1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) or the adduct SIPr.(C6F5)H (SIPr=1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene), followed by addition of CH2Cl2, affords the coordinatively unsaturated ruthenium hydride chloride complexes [Ru(NHC)2(CO)HCl] (NHC=IMes , IPr , SIPr ). These react with CO at room temperature to yield the corresponding 18-electron dicarbonyl complexes . Reduction of and [Ru(IMes)(PPh3)(CO)HCl] () with NaBH4 yields the isolable borohydride complexes [Ru(NHC)(L)(CO)H(eta2-BH4)] (, L=NHC, PPh3). Both the bis-IMes complex and the IMes-PPh3 species react with CO at low temperature to give the eta1-borohydride species [Ru(IMes)(L)(CO)2H(eta1-BH4)] (L=IMes , PPh3), which can be spectroscopically characterised. Upon warming to room temperature, further reaction with CO takes place to afford initially [Ru(IMes)(L)(CO)2H2] (L=IMes, L=PPh3) and, ultimately, [Ru(IMes)(L)(CO)3] (L=IMes , L=PPh3). Both and lose BH3 on addition of PMe2Ph to give [Ru(IMes)(L)(L')(CO)H2](L=L'=PMe2Ph; L=PPh3, L'=PMe2Ph). Compounds and have been tested as catalysts for the hydrogenation of aromatic ketones in the presence of (i)PrOH and H2. For the reduction of acetophenone, catalytic activity varies with the NHC present, decreasing in the order IPr>IMes>SIMes.  相似文献   

18.
[Ru(IV)(por)Cl(2)] (por = porphyrin dianion) can efficiently catalyze nitrene insertion into aldehyde C-H bonds with phosphoryl azides as a nitrene source to give N-acylphosphoramidates in good to high yields.  相似文献   

19.
设计了由1,3-二(2,6-二甲基苯基)-2-四氢咪唑基-苯亚甲基-三苯基膦-二氯合钌(7)和吡啶反应生成无膦型金属钌卡宾化合物1,3-二(2,6-二甲苯基)-2-四氢咪唑基-苯亚甲基-2-吡啶基-二氯合钌(8),8作为高效催化剂用于丙烯腈和烯丙基苯的交叉交互置换反应.新化合物7,8经核磁共振氢谱、碳谱和高分辨率质谱予以证实.  相似文献   

20.
Chan WK  Liu P  Yu WY  Wong MK  Che CM 《Organic letters》2004,6(10):1597-1599
Highly diastereoselective epoxidations of allyl-substituted cycloalkenes including allylic alcohols, esters, and amines using sterically bulky metalloporphyrins [Mn(TDCPP)Cl] (1) and [Ru(TDCPP)CO] (2) as catalysts have been achieved. The "1 + H(2)O(2)" and "2 + 2,6-Cl(2)pyNO" protocols afforded trans-epoxides selectively in good yields (up to 99%) with up to >99:1 trans-selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号