共查询到20条相似文献,搜索用时 15 毫秒
1.
The transitional turbulent regime in confined flow between a rotating and a stationary disc is studied using direct numerical
simulation. Besides its fundamental importance as a three-dimensional prototype flow, such flows frequently arise in many
industrial devices, especially in turbomachinary applications. The present contribution extends the DNS simulation into the
turbulent flow regime, to a rotational Reynolds number Re =3 × 105. An annular rotor-stator cavity of radial extension ΔR and height H, is considered with L = 4.72(L = ΔR/H) and Rm = 2.33 (Rm = (R
1+ R
0)/ΔR). The direct numerical simulation is performed by integrating the time-dependent Navier–Stokes equations until a statistically
steady state is reached. A three-dimensional spectral method is used with the aim of providing both very accurate instantaneous
fields and reliable statistical data. The instantaneous quantities are analysed in order to enhance our knowledge of the physics
of turbulent rotating flows. Also, the results have been averaged so as to provide target turbulence data for any subsequent
modelling attempts at reproducing the flow.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
2.
S.V. Utyuzhnikov 《Flow, Turbulence and Combustion》2002,68(2):137-152
The paper is concerned with a numerical simulation of fuel cloud behaviour which follows releases of a liquid fuel. The main
aim of the work is to develop further a mathematical model to simulate such releases into the atmosphere. The model is validated
by a comparison with experimental results. The influence of boundary conditions for turbulent kinetic energy k and its dissipation rate ε on the solution is investigated. It is concluded that the solution depends mainly on the combination
of k and ε in the form k
3/2/ε rather than each of these values separately. A way to define the boundary conditions for k and ε is suggested. The KIVA-II code has been used as the base of the code used. The original code has been modified to simulate
low Mach number atmospheric flows, radiation, soot formation and turbulent combustion.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
3.
Simulation and Modelling of Turbulent Trailing-Edge Flow 总被引:1,自引:0,他引:1
Computations of turbulent trailing-edge flow have been carried out at a Reynolds number of 1000 (based on the free-stream
quantities and the trailing-edge thickness) using an unsteady 3D Reynolds-Averaged Navier–Stokes (URANS) code, in which two-equation
(k–ε) turbulence models with various low-Re near wall treatments were implemented. Results from a direct numerical simulation
(DNS) of the same flow are available for comparison and assessment of the turbulence models used in the URANS code. Two-dimensional
URANS calculations are carried out with turbulence mean properties from the DNS used at the inlet; the inflow boundary-layer
thickness is 6.42 times the trailing-edge thickness, close to typical turbine blade flow applications. Many of the key flow
features observed in DNS are also predicted by the modelling; the flow oscillates in a similar way to that found in bluff-body
flow with a von Kármán vortex street produced downstream. The recirculation bubble predicted by unsteady RANS has a similar
shape to DNS, but with a length only half that of the DNS. It is found that the unsteadiness plays an important role in the
near wake, comparable to the modelled turbulence, but that far downstream the modelled turbulence dominates. A spectral analysis
applied to the force coefficient in the wall normal direction shows that a Strouhal number based on the trailing-edge thickness
is 0.23, approximately twice that observed in DNS. To assess the modelling approximations, an a priori analysis has been applied using DNS data for the key individual terms in the turbulence model equations. A possible refinement
to account for pressure transport is discussed.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
4.
半封闭狭缝湍流冲击射流的数值模拟 总被引:6,自引:0,他引:6
将Yakhot和Orszag提出的RNGk-ε模型推广应用于半封闭狭缝冲击射流场的数值模拟,以评价该模型对这种复杂湍流的预测能力。将计算得到的流场平均速度分布、湍流强度分布和流函数分布与标准k—ε模型的预测结果以及相应的实验数据进行了比较,结果表明:RNGk—ε模型的预测结果总体上要好于标准k—ε模型,但与实验值相比,所有预测结果都还存在不同程度的误差,尤其是近壁区和滞止点较远下游处的湍流强度分布。说明RNG模型虽然已在某些湍流的预测中取得了一定的成功,但要定量准确地预测冲击射流场,还必须针对其流动特征对模型加以改进。 相似文献
5.
Slip-flow boundary conditions have been used in a direct numerical simulation of incompressible turbulent flow in a plane lubricated channel to mimic the unsteady dynamics of the thin lubricating films present at both channel walls. The results are compared with data from a full simulation, in which also the flow inside the lubrication layers was resolved. By replacing the lubrication layers with the slip-flow conditions, both turbulence statistics and coherent near-wall structures in the bulk-fluid are surprisingly well reproduced. In this approach the need to resolve the flow within the lubricating films is eliminated and the computational efforts are therefore reduced. 相似文献
6.
In this paper we report on a fourth-order, spectro-consistent simulation of a complex turbulent flow. A spatial discretization of a convection-diffusion equation is termed spectro-consistent if the spectral properties of the convective and diffusive operators are preserved, i.e. convection skew-symmetric; diffusion symmetric positive definite. We consider a fully developed flow in a channel, where a matrix of cubes is placed at a wall of the channel. The Reynolds number (based on the channel width and the mean bulk velocity) is equal to Re = 13,000. The three-dimensional flow around the surface mounted cubes has served at a test case at the 6th ERCOFTAC/IAHR/COST workshop on refined flow modeling (Delft, June 1997). Here, mean velocity profiles as well as Reynolds stresses at various locations in the channel have been computed without using any turbulence models. The results agree well with the available experimental data. 相似文献
7.
I. A. Chuprin M. D. Shcherbin 《Journal of Applied Mechanics and Technical Physics》2003,44(3):355-364
Ascent of a large-scale thermal in a standard atmosphere is calculated with the use of the Reynolds equations and the k model of turbulence, which takes into account temperature inhomogeneity and vorticity of the flow, and the Euler equations. Results of numerical calculations of a flow examined experimentally are presented. Gas-dynamic and turbulent flow parameters obtained in calculations and experiments are compared. 相似文献
8.
文章以流体科学进入二十一世纪后,在大规模超算、云存储、数据通信和人工智能为支撑的大数据时代背景下,结合目前在复旦大学航空航天系所构建的热流体湍流直接数值仿真数据库,以及复旦大学团队近期与美国德州大学刘超群教授、上海理工大学蔡小舒教授以及国内水动力学杂志编辑部所合作开展的第三代涡识别技术研究,初步概念性地展示旋涡和湍流,特别是针对有工程实际背景和直接应用价值的壁湍流,在这两个流体力学关键基础议题上的最新认知,和基于大数据深度学习的相关湍流工程模拟实践成果.这些成果包括:(1) 基于第三代涡识别技术的尾迹湍流中的涡运动学和动力学探索;(2) 流-热统一完整的类-1、类-2湍流边界层壁面律构建;(3) 基于第三代涡识别量对Kolmogorov 幂次律的再认知;(4) 基于DNS统计数据和神经网络深度学习构建新型湍流封闭模型及RANS计算实践.通过这些成果展示,论证解决这两个基础流体科学议题的技术路径,进而促进流体及相关学科研究在现代大数据背景下取得实质性进展和突破,并惠及现代流体、气动、水利、动力和化工等工程领域. 相似文献
9.
各向同性湍流内颗粒碰撞率的直接模拟研究 总被引:1,自引:0,他引:1
对 Re_{\lambda } 约为51均匀各向同性湍流内 St_{k}(=\tau_{p}/\tau_{k})
为 0 ~10.0 的
有限惯性颗粒的碰撞行为进行了直接数值模拟,以研究湍流对有限惯性
颗粒碰撞的影响. 结果表明,具有一定惯性颗粒的湍流碰撞率完全不同于零惯性的轻颗粒
(St_{k}=0) 和可忽略湍流作用的重颗粒 (St{k} \to \infty) , 其变化趋势极其复杂:
在Stk为 0~1.0 之间,颗粒的碰撞率随 St 的增加而近乎线性地剧烈增长,在
Stk≈1.0 3.0(对应的StE=τp/Te≈0.5)附近,颗粒碰撞率出现两个峰值,在Stk>3.0以后,颗粒的碰撞率随惯性增
大而逐渐趋向于重颗粒极限;在峰值处,有限惯性颗粒的平均碰撞率的峰值较轻颗粒增强了
30倍左右. 为进一步分析湍流作用下颗粒碰撞率的影响因素,分别使用可能发生碰撞
的颗粒对的径向分布函数和径向相对速度来量化颗粒的局部富集效应和湍流掺混效应,表明
St_{k} \approx 1.0 时局部富集效应最为强烈,使得颗粒的碰撞率出现第1个峰值;
湍流掺混效应则随着颗粒Stk的增大而渐近增大;局部富集和湍流掺混联合作用的结果,
使得颗粒碰撞率在 St_{k} \approx 3.0 附近出现另一个峰值. 相似文献
10.
J. A. Van Oijen R. J. M. Bastiaans G. R. A. Groot L. P. H. De Goey 《Flow, Turbulence and Combustion》2005,75(1-4):67-84
Direct numerical simulation is a very powerful tool to evaluate the validity of new models and theories for turbulent combustion.
In this paper, direct numerical simulations of spherically expanding premixed turbulent flames in the thin reaction zone regime
and in the broken reaction zone regime are performed. The flamelet-generated manifold method is used in order to deal with
detailed reaction kinetics. The computational results are analyzed by using an extended flame stretch theory. It is investigated
whether this theory is able to describe the influence of flame stretch and curvature on the local burning velocity of the
flame. It is found that if the full profiles of flame stretch and curvature through the flame front are included in the theory,
the local mass burning rate is well predicted. The influence of several approximations, which are used in other existing theories,
is studied. When flame stretch is assumed constant through the flame front or when curvature of the flame front is neglected,
the theory fails to predict the local mass burning rate. The influence of using a reduced chemistry model is investigated
by comparing flamelet simulations with reduced and detailed chemistry. 相似文献
11.
Direct numerical simulations of the Navier–Stokes equations have been carried out with the objective of studying turbulent boundary layers in adverse pressure gradients. The boundary layer flows concerned are of the equilibrium type which makes the analysis simpler and the results can be compared with earlier experiments and simulations. This type of turbulent boundary layers also permits an analysis of the equation of motion to predict separation. The linear analysis based on the assumption of asymptotically high Reynolds number gives results that are not applicable to finite Reynolds number flows. A different non-linear approach is presented to obtain a useful relation between the freestream variation and other mean flow parameters. Comparison of turbulent statistics from the zero pressure gradient case and two adverse pressure gradient cases shows the development of an outer peak in the turbulent energy in agreement with experiment. The turbulent flows have also been investigated using a differential Reynolds stress model. Profiles for velocity and turbulence quantities obtained from the direct numerical simulations were used as initial data. The initial transients in the model predictions vanished rapidly. The model predictions are compared with the direct simulations and low Reynolds number effects are investigated. 相似文献
12.
13.
14.
The effects of mean flame radius and turbulence on self-sustained combustion of turbulent premixed spherical flames in decaying
turbulence have been investigated using three-dimensional direct numerical simulations (DNS) with single step Arrhenius chemistry.
Several flame kernels with different initial radius or initial turbulent field have been studied for identical conditions
of thermo-chemistry. It has been found that for very small kernel radius the mean displacement speed may become negative leading
ultimately to extinction of the flame kernel. A mean negative displacement speed is shown to signify a physical situation
where heat transfer from the kernel overcomes the heat release due to combustion. This mechanism is further enhanced by turbulent
transport and, based on simulations with different initial turbulent velocity fields, it has been found that self-sustained
combustion is adversely affected by higher turbulent velocity fluctuation magnitude and integral length scale. A scaling analysis
is performed to estimate the critical radius for self-sustained combustion in premixed flame kernels in a turbulent environment.
The scaling analysis is found to be in good agreement with the results of the simulations. 相似文献
15.
A. W. Vreman J. A. van Oijen L. P. H. de Goey R. J. M. Bastiaans 《Flow, Turbulence and Combustion》2009,82(4):511-535
Large-eddy simulation (LES) of turbulent combustion with premixed flamelets is investigated in this paper. The approach solves
the filtered Navier–Stokes equations supplemented with two transport equations, one for the mixture fraction and another for
a progress variable. The LES premixed flamelet approach is tested for two flows: a premixed preheated Bunsen flame and a partially
premixed diffusion flame (Sandia Flame D). In the first case, we compare the LES with a direct numerical simulation (DNS).
Four non-trivial models for the chemical source term are considered for the Bunsen flame: the standard presumed beta-pdf model,
and three new propositions (simpler than the beta-pdf model): the filtered flamelet model, the shift-filter model and the
shift-inversion model. A priori and a posteriori tests are performed for these subgrid reaction models. In the present preheated
Bunsen flame, the filtered flamelet model gives the best results in a priori tests. The LES tests for the Bunsen flame are
limited to a case in which the filter width is only slightly larger than the flame thickness. According to the a posteriori
tests the three models (beta-pdf, filtered flamelet and shift-inversion) show more or less the same results as the trivial
model, in which subgrid reaction effects are ignored, while the shift-filter model leads to worse results. Since LES needs
to resolve the large turbulent eddies, the LES filter width is bounded by a maximum. For the present Bunsen flame this means
that the filter width should be of the order of the flame thickness or smaller. In this regime, the effects of subgrid reaction
and subgrid flame wrinkling turn out to be quite modest. The LES-results of the second case (Sandia Flame D) are compared
to experimental data. Satisfactory agreement is obtained for the main species. Comparison is made between different eddy-viscosity
models for the subgrid turbulence, and the Smagorinsky eddy-viscosity is found to give worse results than eddy-viscosities
that are not dominated by the mean shear.
Paper presented on the Eccomas Thematic Conference Computational Combustion 2007, submitted for a special issue of Flow, Turbulence
and Combustion. 相似文献
16.
离心风机子午通道内湍流场数值模拟 总被引:6,自引:0,他引:6
由进风口-叶轮-无叶扩压器-蜗壳等部件组成的离心风机通道内流分析是非常复杂的,目前还只能是分别计算各部件内的流场,但必须考虑部件间的相互影响。本文采用轴对称N-S方程,根据三维叶轮通道计算给出的叶片力分布,求解了考虑叶片力的进风口-叶轮-无叶扩压器组成的子午通道问题,所得结果可用来给出三维叶轮通道计算的进口条件,并可用于优化设计进风口及叶轮前、后盘形状。该方法已得到实践检验。 相似文献
17.
对流边界层湍流特性的数值研究 总被引:2,自引:0,他引:2
采用大涡模拟方法研究了存在逆温层的情况下大气对流边界层的湍流特性。实际大气边界层中出现逆温层是较常见的,逆温层会导致大气边界层湍流结构的变化,从而影响大气的湍流扩散和输运特性。本文比较了不同逆温梯度的工况,着重分析了逆温层对边界层中热量逆梯度输运(counter gradient heat transportation,CGHT)的影响。计算结果表明:逆温梯度越大,对流边界层的发展越受到抑制;逆温层高度降低会影响整个对流边界层的温度抬升;逆温梯度越大,垂直速度方差越小;在逆温梯度较大的情况下,其逆梯度输运区域要略微低一些,初步分析认为是由于逆温层对热对流的抑制造成的;对于逆温层高度不同的情况,高度越低的逆温层对逆梯度输运的抑制作用更明显。 相似文献
18.
高速列车紊态外流场的数值模拟研究 总被引:4,自引:0,他引:4
高速列车是近地运行的细长、庞大物体,它的空气绕流问题有其特殊性,本文以不可压缩粘性流体的Navier-Stokes方程和k-ε两方程紊流模型为基础,采用有限元方法求解了高速列车三维紊态外流场,针对有限元法应用于流场计算时常出现的问题,采用分离式解法,非对称矩阵一维变带宽压缩存储及带宽极小化等方法,最大限度地降低计算存储量;并采用罚函数法,集中质量矩阵,缩减积分法,带参数迭代法以及 引入松弛因子等技术,提出了一套用有限元法计算非线性问题的求解方法,提高了收敛速度的计算严谨,计算方法和计算结果对列车空气动力学的深入研究有一定的帮助。 相似文献
19.
20.
Daniel H. Wacks Nilanjan Chakraborty Epaminondas Mastorakos 《Flow, Turbulence and Combustion》2016,96(2):573-607
Turbulent combustion of mono-disperse droplet-mist has been analysed based on three-dimensional Direct Numerical Simulations (DNS) in canonical configuration under decaying turbulence for a range of different values of droplet equivalence ratio (?d), droplet diameter (ad) and root-mean-square value of turbulent velocity (u′). The fuel is supplied in liquid phase and the evaporation of droplets gives rise to gaseous fuel for the flame propagation into the droplet-mist. It has been found that initial droplet diameter, turbulence intensity and droplet equivalence ratio can have significant influences on the volume-integrated burning rate, flame surface area and burning rate per unit area. The droplets are found to evaporate predominantly in the preheat zone, but some droplets penetrate the flame front, reaching the burned gas side where they evaporate and some of the resulting fuel vapour diffuses back towards the flame front. The combustion process in gaseous phase takes place predominantly in fuel-lean mode even for ?d > 1. The probability of finding fuel-lean mixture increases with increasing initial droplet diameter because of slower evaporation of larger droplets and this predominantly fuel-lean mode of combustion exhibits the attributes of low Damköhler number combustion and gives rise to thickening of flame with increasing droplet diameter. The chemical reaction is found to take place under both premixed and non-premixed modes of combustion and the relative contribution of non-premixed combustion to overall heat release increases with increasing droplet size. The statistical behaviours of the flame propagation and mode of combustion have been analysed in detail and detailed physical explanations have been provided for the observed behaviour. 相似文献