首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study convergence of a semismooth Newton method for generalized semi-infinite programming problems with convex lower level problems where, using NCP functions, the upper and lower level Karush-Kuhn-Tucker conditions of the optimization problem are reformulated as a semismooth system of equations. Nonsmoothness is caused by a possible violation of strict complementarity slackness. We show that the standard regularity condition for convergence of the semismooth Newton method is satisfied under natural assumptions for semi-infinite programs. In fact, under the Reduction Ansatz in the lower level and strong stability in the reduced upper level problem this regularity condition is satisfied. In particular, we do not have to assume strict complementary slackness in the upper level. Numerical examples from, among others, design centering and robust optimization illustrate the performance of the method.   相似文献   

2.
In this paper, an algorithm is developed for solving a nonlinear programming problem with linear contraints. The algorithm performs two major computations. First, the search vector is determined by projecting the negative gradient of the objective function on a polyhedral set defined in terms of the gradients of the equality constraints and the near binding inequality constraints. This least-distance program is solved by Lemke's complementary pivoting algorithm after eliminating the equality constraints using Cholesky's factorization. The second major calculation determines a stepsize by first computing an estimate based on quadratic approximation of the function and then finalizing the stepsize using Armijo's inexact line search. It is shown that any accumulation point of the algorithm is a Kuhn-Tucker point. Furthermore, it is shown that, if an accumulation point satisfies the second-order sufficiency optimality conditions, then the whole sequence of iterates converges to that point. Computational testing of the algorithm is presented.  相似文献   

3.
We present a globally convergent phase I-phase II algorithm for inequality-constrained minimization, which computes search directions by approximating the solution to a generalized quadratic program. In phase II these search directions are feasible descent directions. The algorithm is shown to converge linearly under convexity assumptions. Both theory and numerical experiments suggest that it generally converges faster than the Polak-Trahan-Mayne method of centers.The research reported herein was sponsored in part by the Air Force Office of Scientific Research (Grant AFOSR-90-0068), the National Science Foundation (Grant ECS-8713334), and a Howard Hughes Doctoral Fellowship (Hughes Aircraft Co.).  相似文献   

4.
Methods are developed and analyzed for estimating the distance to a local minimizer of a nonlinear programming problem. One estimate, based on the solution of a constrained convex quadratic program, can be used when strict complementary slackness and the second-order sufficient optimality conditions hold. A second estimate, based on the solution of an unconstrained nonconvex, nonsmooth optimization problem, is valid even when strict complementary slackness is violated. Both estimates are valid in a neighborhood of a local minimizer. An active set algorithm is developed for computing a stationary point of the nonsmooth error estimator. Each iteration of the algorithm requires the solution of a symmetric, positive semidefinite linear system, followed by a line search. Convergence is achieved in a finite number of iterations. The error bounds are based on stability properties for nonlinear programs. The theory is illustrated by some numerical examples.  相似文献   

5.
Conjugate gradient methods have been extensively used to locate unconstrained minimum points of real-valued functions. At present, there are several readily implementable conjugate gradient algorithms that do not require exact line search and yet are shown to be superlinearly convergent. However, these existing algorithms usually require several trials to find an acceptable stepsize at each iteration, and their inexact line search can be very timeconsuming.In this paper we present new readily implementable conjugate gradient algorithms that will eventually require only one trial stepsize to find an acceptable stepsize at each iteration.Making usual continuity assumptions on the function being minimized, we have established the following properties of the proposed algorithms. Without any convexity assumptions on the function being minimized, the algorithms are globally convergent in the sense that every accumulation point of the generated sequences is a stationary point. Furthermore, when the generated sequences converge to local minimum points satisfying second-order sufficient conditions for optimality, the algorithms eventually demand only one trial stepsize at each iteration, and their rate of convergence isn-step superlinear andn-step quadratic.This research was supported in part by the National Science Foundation under Grant No. ENG 76-09913.  相似文献   

6.
In this paper, the necessary optimality conditions for an unconstrained optimal control problem are used to derive a quasi-Newton method where the update involves only second-order derivative terms. A pointwise update which was presented in a previous paper by the authors is changed to allow for more general second-order sufficiency conditions in the control problem. In particular, pointwise versions of the Broyden, PSB, and SR1 update are considered. A convergence rate theorem is given for the Broyden and PSB versions.This research was supported by NSF Grant No. DMS-89-00410, by NSF Grant No. INT-88-00560, by AFOSR Grant No. AFOSR-89-0044, and by the Deutsche Forschungsgemeinschaft.  相似文献   

7.
In this part of the two-part series of papers, algorithms for solving some variable programming (VP) problems proposed in Part I are investigated. It is demonstrated that the non-differentiability and the discontinuity of the maximum objective function, as well as the summation objective function in the VP problems constitute difficulty in finding their solutions. Based on the principle of statistical mechanics, we derive smooth functions to approximate these non-smooth objective functions with specific activated feasible sets. By transforming the minimax problem and the corresponding variable programming problems into their smooth versions we can solve the resulting problems by some efficient algorithms for smooth functions. Relevant theoretical underpinnings about the smoothing techniques are established. The algorithms, in which the minimization of the smooth functions is carried out by the standard quasi-Newton method with BFGS formula, are tested on some standard minimax and variable programming problems. The numerical results show that the smoothing techniques yield accurate optimal solutions and that the algorithms proposed are feasible and efficient.This work was supported by the RGC grant CUHK 152/96H of the Hong Kong Research Grant Council.  相似文献   

8.
《Applied Mathematical Modelling》2014,38(7-8):2151-2162
This paper deals with multi-commodity flow problem with fractional objective function. The optimality conditions and the duality concepts of this problem are given. For this aim, the fractional linear programming formulation of this problem is considered and the weak duality, the strong direct duality and the weak complementary slackness theorems are proved applying the traditional duality theory of linear programming problems which is different from same results in Chadha and Chadha (2007) [1]. In addition, a strong (strict) complementary slackness theorem is derived which is firstly presented based on the best of our knowledge. These theorems are transformed in order to find the new reduced costs for fractional multi-commodity flow problem. These parameters can be used to construct some algorithms for considered multi-commodity flow problem in a direct manner. Throughout the paper, the boundedness of the primal feasible set is reduced to a weaker assumption about solvability of primal problem which is another contribution of this paper. Finally, a real world application of the fractional multi-commodity flow problem is presented.  相似文献   

9.
In this paper, we complete a cycle in the construction of methods of feasible directions for solving semi-infinite constrained optimization problems. Earlier phase I-phase II methods of feasible directions used one search direction rule in all of n with two stepsize rules, one for feasible points and one for infeasible points. The algorithm presented in this paper uses both a single search direction rule and a single stepsize rule in all of n . In addition, the new algorithm incorporates a steering parameter which can be used to control the speed with which feasibility is achieved. The new algorithm is simpler to analyze and performs somewhat better than existing, first order, phase I-phase II methods. The new algorithm is globally convergent, with linear rate.The research reported herein was sponsored in part by the National Science Foundation Grant ECS-8713334, the Air Force Office of Scientific Research Contract AFOSR-86-0116, and the State of California MICRO Program Grant 532410-19900.The authors would like to thank Dr. J. Higgins for providing the C-code of Algorithm 3.1.  相似文献   

10.
We propose feasible descent methods for constrained minimization that do not make explicit use of the derivative of the objective function. The methods iteratively sample the objective function value along a finite set of feasible search arcs and decrease the sampling stepsize if an improved objective function value is not sampled. The search arcs are obtained by projecting search direction rays onto the feasible set and the search directions are chosen such that a subset approximately generates the cone of first-order feasible variations at the current iterate. We show that these methods have desirable convergence properties under certain regularity assumptions on the constraints. In the case of linear constraints, the projections are redundant and the regularity assumptions hold automatically. Numerical experience with the methods in the linearly constrained case is reported. Received: November 12, 1999 / Accepted: April 6, 2001?Published online October 26, 2001  相似文献   

11.
We propose a new inexact line search rule and analyze the global convergence and convergence rate of related descent methods. The new line search rule is similar to the Armijo line-search rule and contains it as a special case. We can choose a larger stepsize in each line-search procedure and maintain the global convergence of related line-search methods. This idea can make us design new line-search methods in some wider sense. In some special cases, the new descent method can reduce to the Barzilai and Borewein method. Numerical results show that the new line-search methods are efficient for solving unconstrained optimization problems. The work was supported by NSF of China Grant 10171054, Postdoctoral Fund of China, and K. C. Wong Postdoctoral Fund of CAS Grant 6765700. The authors thank the anonymous referees for constructive comments and suggestions that greatly improved the paper.  相似文献   

12.
In this paper we give a variant of the Topkis—Veinott method for solving inequality constrained optimization problems. This method uses a linearly constrained positive semidefinite quadratic problem to generate a feasible descent direction at each iteration. Under mild assumptions, the algorithm is shown to be globally convergent in the sense that every accumulation point of the sequence generated by the algorithm is a Fritz—John point of the problem. We introduce a Fritz—John (FJ) function, an FJ1 strong second-order sufficiency condition (FJ1-SSOSC), and an FJ2 strong second-order sufficiency condition (FJ2-SSOSC), and then show, without any constraint qualification (CQ), that (i) if an FJ point z satisfies the FJ1-SSOSC, then there exists a neighborhood N(z) of z such that, for any FJ point y ∈ N(z) \ {z } , f 0 (y) ≠ f 0 (z) , where f 0 is the objective function of the problem; (ii) if an FJ point z satisfies the FJ2-SSOSC, then z is a strict local minimum of the problem. The result (i) implies that the entire iteration point sequence generated by the method converges to an FJ point. We also show that if the parameters are chosen large enough, a unit step length can be accepted by the proposed algorithm. Accepted 21 September 1998  相似文献   

13.
Adaptive Two-Point Stepsize Gradient Algorithm   总被引:7,自引:0,他引:7  
Combined with the nonmonotone line search, the two-point stepsize gradient method has successfully been applied for large-scale unconstrained optimization. However, the numerical performances of the algorithm heavily depend on M, one of the parameters in the nonmonotone line search, even for ill-conditioned problems. This paper proposes an adaptive nonmonotone line search. The two-point stepsize gradient method is shown to be globally convergent with this adaptive nonmonotone line search. Numerical results show that the adaptive nonmonotone line search is specially suitable for the two-point stepsize gradient method.  相似文献   

14.
王福胜  张瑞 《计算数学》2018,40(1):49-62
针对带不等式约束的极大极小问题,借鉴一般约束优化问题的模松弛强次可行SQP算法思想,提出了求解不等式约束极大极小问题的一个新型模松弛强次可行SQCQP算法.首先,通过在QCQP子问题中选取合适的罚函数,保证了算法的可行性以及目标函数F(x)的下降性,同时简化QCQP子问题二次约束项参数α_k的选取,可保证算法的可行性和收敛性.其次,算法步长的选取合理简单.最后,在适当的假设条件下证明了算法具有全局收敛性及强收敛性.初步的数值试验结果表明算法是可行有效的.  相似文献   

15.
It has been recently reported that minimax eigenvalue problems can be formulated as nonlinear optimization problems involving smooth objective and constraint functions. This result seems very appealing since minimax eigenvalue problems are known to be typically nondifferentiable. In this paper, we show, however, that general purpose nonlinear optimization algorithms usually fail to find a solution to these smooth problems even in the simple case of minimization of the maximum eigenvalue of an affine family of symmetric matrices, a convex problem for which efficient algorithms are available.This work was supported in part by NSF Engineering Research Centers Program No. NSFD-CDR-88-03012 and NSF Grant DMC-84-20740. The author wishes to thank Drs. M. K. H. Fan and A. L. Tits for their many useful suggestions.  相似文献   

16.
A new, infeasible QP-free algorithm for nonlinear constrained optimization problems is proposed. The algorithm is based on a continuously differentiable exact penalty function and on active-set strategy. After a finite number of iterations, the algorithm requires only the solution of two linear systems at each iteration. We prove that the algorithm is globally convergent toward the KKT points and that, if the second-order sufficiency condition and the strict complementarity condition hold, then the rate of convergence is superlinear or even quadratic. Moreover, we incorporate two automatic adjustment rules for the choice of the penalty parameter and make use of an approximated direction as derivative of the merit function so that only first-order derivatives of the objective and constraint functions are used.  相似文献   

17.
Most papers concerning nonlinear programming problems with linear constraints assume linear independence of the gradients of the active constraints at any feasible point. In this paper we remove this assumption and give an algorithm and prove its convergency. Also, under appropriate assumptions on the objective function, including one which could be viewed as an extension of the strict complementary slackness condition at the optimal solution, we prove the rate of convergence of the algorithm to be superlinear.  相似文献   

18.
We develop a duality theory for minimax fractional programming problems in the face of data uncertainty both in the objective and constraints. Following the framework of robust optimization, we establish strong duality between the robust counterpart of an uncertain minimax convex–concave fractional program, termed as robust minimax fractional program, and the optimistic counterpart of its uncertain conventional dual program, called optimistic dual. In the case of a robust minimax linear fractional program with scenario uncertainty in the numerator of the objective function, we show that the optimistic dual is a simple linear program when the constraint uncertainty is expressed as bounded intervals. We also show that the dual can be reformulated as a second-order cone programming problem when the constraint uncertainty is given by ellipsoids. In these cases, the optimistic dual problems are computationally tractable and their solutions can be validated in polynomial time. We further show that, for robust minimax linear fractional programs with interval uncertainty, the conventional dual of its robust counterpart and the optimistic dual are equivalent.  相似文献   

19.
The method of centers is a well-known method for solving nonlinear programming problems having inequality constraints. Pironneau and Polak have recently presented a new version of this method. In the new method, the direction of search is obtained, at each iteration, by solving a convex quadratic programming problem. This direction finding subprocedure is essentially insensitive to the dimension of the space on which the problem is defined. Moreover, the method of Pironneau and Polak is known to converge linearly for finite-dimensional convex programs for which the objective function has a positive-definite Hessian near the solution (and for which the functions involved are twice continuously differentiable). In the present paper, the method and a completely implementable version of it are shown to converge linearly for a very general class of finite-dimensional problems; the class is determined by a second-order sufficiency condition and includes both convex and nonconvex problems. The arguments employed here are based on the indirect sufficiency method of Hestenes. Furthermore, the arguments can be modified to prove linear convergence for a certain class of infinite-dimensional convex problems, thus providing an answer to a conjecture made by Pironneau and Polak.  相似文献   

20.
In this article, an approach for solving finite minimax problems is proposed. This approach is based on the use of hyperbolic smoothing functions. In order to apply the hyperbolic smoothing we reformulate the objective function in the minimax problem and study the relationship between the original minimax and reformulated problems. We also study main properties of the hyperbolic smoothing function. Based on these results an algorithm for solving the finite minimax problem is proposed and this algorithm is implemented in general algebraic modelling system. We present preliminary results of numerical experiments with well-known nonsmooth optimization test problems. We also compare the proposed algorithm with the algorithm that uses the exponential smoothing function as well as with the algorithm based on nonlinear programming reformulation of the finite minimax problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号