首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new fluorescein-based chemodosimeter (II) for Hg2+ ion was designed and synthesized, and it displayed excellent selective and sensitive toward Hg2+ ion over other commonly metal ions in aqueous media. II was a colorless, non-fluorescent compound. Upon addition of Hg2+ to the solution of II, the thiosemicarbazide moiety of II would undergo an irreversible desulfurization reaction to form its corresponding oxadiazole (IV), a colorful and fluorescent product. During this process, the spirocyclic ring of II was opened, causing instantaneous development of visible color and strong fluorescence emission in the range of 500-600 nm. Based on the above mechanism, a fluorogenic Hg2+-selective chemodosimeter was developed. The fluorescence increase is linearly with Hg2+ concentration up to 1.0 μmol L−1 with a detection limit of 8.5 × 10−10 mol L−1 (3σ). Compared with the rhodamine-type chemodosimeter, II is more stable in aqueous media and exhibits higher sensitivity toward Hg2+. The findings suggest that II will serve as a practical chemodosimeter for rapid detection of Hg2+ concentrations in realistic media.  相似文献   

2.
Three fluorescent quinazolines thiophen-2-yl-5,6-dihydrobenzo-[4,5]imidazo[1,2-c]quinazoline (1), pyridin-3-yl-5,6-dihydrobenzo-[4,5]imidazo-[1,2-c]quinazoline (2) and phenyl-5,5′,6,6′-dihydrobenzo-[4,4′,5,5′]imidazo-[1.1′,2-c,2′-c]quinazoline (3) have been synthesized. Structures of 1 and 3 have been authenticated crystallographically. Quinazolines 1-3 exhibit highly selective ‘on-off’ switching for Hg2+ ions. The fluorescence intensity displayed a linear relationship with respect to Hg2+ concentration (0.1-1.0 μM; R2 = 0.99) with detection limit of 2.0 × 10−7 M.  相似文献   

3.
A new indole-based fluorescent chemosensor 1 was prepared and its metal ion sensing properties were investigated. It exhibits high sensitivity and selectivity toward Hg2+ among a series of metal ions in H2O-EtOH (7:1, v/v). The association constant of the 1:1 complex formation for 1-Hg2+ was calculated to be 9.57 × 103 M−1, and the detection limit for Hg2+ was found to be 2.25 × 10−5 M. Computational results revealed that 1 and Hg2+ ion formed with a central tetrahedron-coordinated Hg2+.  相似文献   

4.
A fluorescent probe 1 for Hg2+ based on a rhodamine-coumarin conjugate was designed and synthesized. Probe 1 exhibits high sensitivity and selectivity for sensing Hg2+, and about a 24-fold increase in fluorescence emission intensity is observed upon binding excess Hg2+ in 50% water/ethanol buffered at pH 7.24. The fluorescence response to Hg2+ is attributed to the 1:1 complex formation between probe 1 and Hg2+, which has been utilized as the basis for the selective detection of Hg2+. Besides, probe 1 was also found to show a reversible dual chromo- and fluorogenic response toward Hg2+ likely due to the chelation-induced ring opening of rhodamine spirolactam. The analytical performance characteristics of the proposed Hg2+-sensitive probe were investigated. The linear response range covers a concentration range of Hg2+ from 8.0 × 10−8 to 1.0 × 10−5 mol L−1 and the detection limit is 4.0 × 10−8 mol L−1. The determination of Hg2+ in both tap and river water samples displays satisfactory results.  相似文献   

5.
A heterocyclic hydrazone ligand, pyridine-2-carboxaldehyde-2-pyridylhydrazone, HL, 1, was investigated as a new chromogenic agent for selective detection of Pd2+. The ligand HL, 1, undergoes 1:1 complexation with Pd2+ and Cu2+ to form complexes [Pd(L)Cl], 1a and [Cu(HL)Cl2], 1b respectively. The complex 1a gives a characteristic absorption peak at 536 nm with distinct reddish-pink coloration. The change in color can easily be distinguished from other metal complexes by the naked eye. No obvious interference was observed in the presence of other metal ions (Na+, K+, Mg2+, Ca2+, Al3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Sn2+, Hg2+, Pb2+). The association constants, Kass (UV–Vis), were found to be 5.52 ± 0.004 × 104 for 1a and 4.94 ± 0.006 × 104 for 1b at 298 K. On excitation at 295 nm, the ligand HL, 1 strongly emits at 372 nm due to an intraligand 1(π–π) transition. Upon complexation the emission peaks are blue shifted (λex 295 nm, λem 358 nm for 1a and λex 295 nm, λem 367 nm for 1b) along with a quenching (F/F0 0.32 for 1a and 0.88 for 1b) in the emission intensity. DFT and TDDFT calculations were highly consistent with the spectroscopic behavior of the ligand and complexes. The molecular structure of the complex 1b has been determined by single crystal X-ray diffraction studies.  相似文献   

6.
Prabhpreet Singh 《Tetrahedron》2006,62(26):6379-6387
The dipod 1,2-bis(8-hydroxyquinolinoxymethyl)benzene (3) and tetrapod 1,2,4,5-tetrakis(8-hydroxyquinolinoxymethyl)benzene (5) have been synthesized through nucleophilic substitution of respective 1,2-bis(bromomethyl)benzene (2) and 1,2,4,5-tetra(bromomethyl)benzene (4) with 8-hydroxyquinoline (1). For comparison, 1,3,5-tris(8-hydroxyquinolinoxymethyl)benzene derivatives (7a and 7b) have been obtained. The complexation behavior of these podands towards Ag+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ metal ions has been investigated in acetonitrile by fluorescence spectroscopy. The sterically crowded 1,2,4,5-tetrapod 5 displays unique fluorescence ‘ON-OFF-ON’ switching through fluorescence quenching (λmax 395 nm, switch OFF) with <1.0 equiv of Ag+ and fluorescence enhancement (λmax 495 nm, switch ON) with >3 equiv Ag+ and can be used for estimation of two different concentrations of Ag+ at two different wavelengths. The addition of Cu2+, Ni2+, and Co2+ metal ions to tetrapod 5 causes fluorescence quenching, i.e., ‘ON-OFF’ phenomena at λmax 395 nm for <10 μM (1 equiv) of these ions but addition of Zn2+ and Cd2+ to tetrapod 5 results in fluorescence enhancement with a gradual shift of λem from 395 to 432 and 418 nm, respectively. Similarly, dipod 3 behaves as an ‘ON-OFF-ON’ switch with Ag+, an ‘ON-OFF’ switch with Cu2+, and an ‘OFF-ON’ switch with Zn2+. The placement of quinolinoxymethyl groups at the 1,3,5-positions of benzene ring in tripod 7a-b leads to simultaneous fluorescence quenching at λmax 380 nm and enhancement at λmax 490 nm with both Ag+ and Cu2+. This behavior is in parallel with 8-methoxyquinoline 8. The rationalization of these results in terms of metal ion coordination and protonation of podands shows that 1,2 placement of quinoline units in tetrapod 5 and dipod 3 causes three different fluorescent responses, i.e., ‘ON-OFF-ON’, ‘ON-OFF’, and ‘OFF-ON’ due to metal ion coordination of different transition metal ions and 1, 3, and 5 placement of three quinolines in tripod 7, the protonation of quinolines is preferred over metal ion coordination. In general, the greater number of quinoline units coordinated per metal ion in 5 compared with the other podands points to organization of the four quinoline moieties around metal ions in the case of 5.  相似文献   

7.
Zhaochao Xu  Jingnan Cui  Rong Zhang 《Tetrahedron》2006,62(43):10117-10122
The design, synthesis, and photophysical evaluation of a new naphthalimide-based fluorescent chemosensor, N-butyl-4-[di-(2-picolyl)amino]-5-(2-picolyl)amino-1,8-naphthalimide (1), were described for the detection of Zn2+ in aqueous acetonitrile solution at pH 7.0. Probe 1 showed absorption at 451 nm and a strong fluorescence emission at 537 nm (ΦF=0.33). The capture of Zn2+ by the receptor resulted in the deprotonation of the secondary amine conjugated to 1,8-naphthalimide so that the electron-donating ability of the N atom would be greatly enhanced; thus probe 1 showed a 56 nm red-shift in absorption (507 nm) and fluorescence spectra (593 nm, ΦF=0.14), respectively, from which one could sense Zn2+ ratiometrically and colorimetrically. The deprotonated complex, [(1-H)/Zn]+, was calculated at m/z 619.1800 and measured at m/z 618.9890. In contrast to these results, the emission of 1 was thoroughly quenched by Cu2+, Co2+, and Ni2+. The addition of other metal ions such as Li+, Na+, K+, Mg2+, Ca2+, Fe3+, Mn2+, Al3+, Cd2+, Hg2+, Ag+, and Pb2+ produced a nominal change in the optical properties of 1 due to their low affinity to probe 1. This means that probe 1 has a very high fluorescent imaging selectivity to Zn2+ among metal ions.  相似文献   

8.
We have synthesized two novel push-pull-type fluorescent 7-deazapurine nucleosides, CNZA and CNZG, and investigated their photophysical properties. In particular, CNZA was found to exhibit a remarkable solvatofluorochromicity (Δλfl.max = 60 nm). We incorporated CNZA into oligonucleotides and found that CNZA can form a stable base pair with both thymine and cytosine. Such environmentally sensitive fluorescent nucleosides have a potential as a fluorescence sensor for structural studies of nucleic acids.  相似文献   

9.
Chemosensor based on Schiff base molecules (1, 2) were synthesized and demonstrated the selective fluoro/colorimetric sensing of multiple metal ions (Mn2+, Zn2+ and Cd2+) in acetonitrile–aqueous solution. Both 1 and 2 showed a highly selective naked-eye detectable colorimetric change for Mn2+ ions at 10−7 M. Fluorescence sensing studies of 1 and 2 exhibited a strong fluorescence enhancement (36 fold) selectively upon addition of Zn2+ (10−7 M, λmax = 488 nm). Fluorescence titration and single crystal X-ray analysis confirmed the formation of 1:1 molecular coordination complex between 1 and Zn2+. Interestingly, a rare phenomenon of strong second turn-on fluorescence (190 fold, λmax = 466 nm) was observed by the addition of Cd2+ (10−7 M) into 1 + Zn2+ or Zn2+ (10−7 M) into 1 + Cd2+. Importantly both 1 and 2 exhibited different fluorescence λmax with clearly distinguishable color for both Zn2+ and Cd2+.  相似文献   

10.
Two 4,5-disubstituted-1,8-naphthalimide derivatives 1 and 2 were synthesized as ratiometric fluorescent and colorimetric sensors for Cu2+, respectively. In 100% aqueous solutions of 1, the presence of Cu2+ induces a strong and increasing fluorescent emission centered at 478 nm at the expense of the fluorescent emission of 1 centered at 534 nm. Compound 2 senses Cu2+ by means of a colorimetric (primrose yellow to pink) method with a thorough quench in emission attributed to the deprotonation of the secondary amine conjugated to the naphthalimide fluorophore. 1-Cu2+ and 2-Cu2+ sense cyanide in ratiometric way via colorimetric and fluorescent changes.  相似文献   

11.
New rhodamine derivatives bearing urea group have been synthesized for the detection of metal ions. Especially, the dimeric system 2 displayed a selective fluorescent enhancement and colorimetric change upon the addition of Hg2+, in which the spirolactam (nonfluorescent) to ring opened amide (fluorescent) process was utilized. The association constant of 2 with Hg2+ was calculated as 3.2 × 105 M−1.  相似文献   

12.
Naphthalimide derivative (compound 1) containing hydrophilic hexanoic acid group was synthesized and used to recognize Hg2+ in aqueous solution. The fluorescence enhancement of 1 is attributed to the formation of a complex between 1 and Hg2+ by 1:1 complex ratio (K = 2.08 × 105), which has been utilized as the basis of fabrication of the Hg2+-sensitive fluorescent chemosensor. The comparison of this method with some other fluorescence methods for the determination of Hg2+ indicated that the method can be applied in aqueous solution rather than organic solution. The analytical performance characteristics of the proposed Hg2+-sensitive chemosensor were investigated. The chemosensor can be applied to the quantification of Hg2+ with a linear range covering from 2.57 × 10−7 to 9.27 × 10−5 M and a detection limit of 4.93 × 10−8 M. The experiment results show that the response behavior of 1 toward Hg2+ is pH independent in medium condition (pH 4.0–8.0). Most importantly, the fluorescence changes of the chemosensor are remarkably specific for Hg2+ in the presence of other metal ions, which meet the selective requirements for practical application. Moreover, the response of the chemosensor toward Hg2+ is fast (response time less than 1 min). In addition, the chemosensor has been used for determination of Hg2+ in hair samples with satisfactory results, which further demonstrates its value of practical applications.  相似文献   

13.
New fluorescent peptide-based sensors (13) for monitoring heparin in serum sample were synthesized using short peptides (1∼3mer) as a receptor. The peptide-based sensors (2 and 3) showed a sensitive ratiometric response to heparin both in aqueous buffered solution (10 mM HEPES, pH 7.4) and in 2% human serum sample by increase of excimer emission of pyrene at 480 nm and concomitant decrease of monomer emission of pyrene at 376 nm, whereas the peptide-based sensor 1 showed a turn off response only by decrease of monomer emission at 376 nm. 2 and 3 exhibited excellent selectivity toward heparin among various anions and competitors of heparin including chondroitin 4-sulfate (ChS) and hyaluronic acid (HA). Peptide-based sensor 3 showed a more sensitive response to heparin than 2. The detection limit of 3 was determined as 36 pM (R2 = 0.998) for heparin in aqueous solution and 204 pM (R2 = 0.999) for heparin in aqueous solutions containing 2% human serum. The peptide-based sensors, 2 and 3 provided a practical and potential tool for the detection and quantification of heparin in real biological samples.  相似文献   

14.
Na Li 《Talanta》2009,79(2):327-153
Salicylaldehyde hydrazones of 1 and 2 were synthesized and their potential as fluorescent probes for zinc ion was investigated in this paper. Both of the probes were found to show fluorescence change upon binding with Zn2+ in aqueous solutions, with good selectivity to Zn2+ over other metal ions such as alkali/alkali earth metal ions and heavy metal ions of Pb2+, Cd2+ and Hg2+. They showed 1:2 metal-to-ligand ratio when their Zn2+ complex was formed. By introducing pyrene as fluorophore, 2 showed interesting ratiometric response to Zn2+. Under optimal condition, 2 exhibited a linear range of 0-5.0 μM and detection limit of 0.08 μM Zn2+ in aqueous buffer, respectively. The detection of Zn2+ in drinking water samples using 2 as fluorescent probe was successful.  相似文献   

15.
New N-(pyrenylmethyl)naphtho-azacrown-5 (1) was synthesized as an ‘On-Off’ fluorescent chemosensor for Cu2+. Excited at 240 nm corresponding to the absorption of naphthalene unit (energy donor) of 1, emission at 380 nm from pyrene unit (energy acceptor) is observed, indicating that intramolecular fluorescence resonance energy transfer (FRET-On) occurs in 1. When Cu2+ is added to a solution of 1, however, the fluorescence of pyrene is strongly quenched (FRET-Off) whereas that of naphthalene group is revived. Such FRET ‘On-Off’ behavior of 1 is observed only in the case of Cu2+ binding, but not for other metal cations. The high selectivity of 1 toward Cu2+ can be potentially applied to a new kind of FRET-based chemosensor. The FRET On-Off behavior is supported by computational studies. The calculated molecular orbitals of HOMO and LUMOs suggest the excited-state interactions leading to FRET from naphthalene to pyrene in 1, but no electron density changes in 1·Cu2+ complex.  相似文献   

16.
Carbohydrate based fluorescent sensors S1 and S2 have been developed by fluorogenic dual click chemistry and are characterized by various spectroscopic techniques. Both the fluorescent probes displayed highly selective detection of Cu2+ ions by means of fluorescence quenching. The job plot experiment suggested 1:1 complexation of probes S1 and S2 with Cu2+ ions having detection limit of 6.99 μM and 7.30 μM, respectively. The binding constants for S1-Cu2+ and S2-Cu2+ complexation were evaluated to be 3.34 × 103 M−1 and 5.93 × 103 M−1, respectively.  相似文献   

17.
We developed a new fluorescent sensor (PPC-S) for Hg2+ based on the aggregation-induced emission (AIE) of pyrazolo[3,4-b]pyridine-based coumarin chromophore (PPC-O). Given the desulfurization reaction with Hg2+, AIE inactive PPC-S can be transformed into PPC-O with AIE activity, which can be employed for the fluorescence turn-on detection of Hg2+ with satisfactory selectivity and sensitivity in aqueous solutions.  相似文献   

18.
Two new π-conjugated linked ferrocenyl-acridine dyads, (9-ethynylferrocenyl)acridine (3a) and (1-(ferrocenylethynyl)-4-ethynylbenzenyl)-acridine (3b), have been synthesized and investigated. UV-Vis spectroscopic and electrochemical studies reveal that 3a offers stronger electronic communication between terminal subunits than the extended system 3b, as shown by a stronger and lower-energy metal-to-ligand charge transfer (MLCT) transition and a more positive redox potential. Both of 3a and 3b show multiresponse to protons and selected metal ions (M = Zn2+, Pb2+, Hg2+, Fe3+, Cr3+), with a MLCT transition shift to the lower-energy, a redox potential shift to anode, and a luminescence increasing.  相似文献   

19.
The synthesis and electrochemical properties of new cobalt and manganese phthalocyanine complexes, tetra-substituted with 3,4-(methylendioxy)-phenoxy at the peripheral (complexes 3 and 5) and non-peripheral (complexes 4 and 6) positions, are reported. Complexes 3 and 4 showed Q-band absorption, in DMF, at 668 and 686 nm, respectively while Q-band due to complexes 5 and 6 appeared at 732 and 760 nm, respectively in CHCl3. All the complexes showed well resolved redox processes attributed to both metal and ring based processes. Complexes 3 and 4 showed four redox processes, labeled I, II, III and IV. For complex 3, process I (CoIPc−2/CoIPc−3) was observed at −1.45 V, II (CoIIPc−2/CoIPc−2) at −0.38 V, III (CoIIIPc−2/CoIIPc−2) at +0.49 V and IV (CoIIIPc−1/CoIIIPc−2) at +0.97 V versus Ag|AgCl. Similar processes were observed for complex 4 at −1.36 V, −0.27 V, +0.56 V, +1.03 V versus Ag|AgCl, respectively. Complexes 5 and 6 showed two redox processes (I and II). For complex 5, these processes appeared at −0.79 V (MnIIPc−2/MnIIPc−3, I) and −0.07 V versus Ag|AgCl (MnIIIPc−2/MnIIPc−2, II), while for complex 6, they were observed at −0.86 V and −0.04 V versus Ag|AgCl. Spectroelectrochemistry was used to probe and confirm the origin of these processes.  相似文献   

20.
New dioxocyclam derivatives bearing two anthracene fluorophores were prepared, and their fluoroionophoric properties toward transition metal ions were investigated. Chemosensor 2 having anthrylacetamide moieties exhibited pronounced Hg2+- and Cu2+-selective fluoroionophoric properties in aqueous acetonitrile solution over other representative transition metal ions, as well as alkali and alkaline earth metal ions. Chemosensor 2 also exhibited Hg2+ and Cu2+ selectivity under competitive conditions in the presence of physiologically and environmentally important metal ions. The detection limits for the sensing of Hg2+ and Cu2+ ions were 7.8 × 10−6 and 1.5 × 10−6 M, respectively, in aqueous 95% acetonitrile solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号