首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A novel solid-phase microextraction (SPME) fiber coating was prepared with siloxane-modified polyurethane acrylic resin by photo-cured technology. The ratio of two monomers was investigated to obtain good microphase separation structure and better extraction performance. The self-made fiber was then applied to organophosphorus pesticides (OPPs) analysis and several factors, such as extraction/desorption time, extraction temperature, salinity, and pH, were studied. The optimized conditions were: 15 min extraction at 25 °C, 5% Na2SO4 content, pH 7.0 and 4 min desorption in GC inlet. The self-made fiber coating exhibited better extraction efficiency for OPPs, compared with three commercial fiber coatings. Under the optimized conditions, the detection limits of 11 OPPs were from 0.03 μg L−1 to 0.5 μg L−1. Good recoveries and repeatabilities were obtained when the method was used to determine OPPs in ecological textile.  相似文献   

2.
This study proposed that hybrid scrap cast iron particles (SIP)-aerobic biodegradation technology could enhance the biodegradability of toxic wastewater. SIP cleaved the azo linkages of Direct Green1 dye to form benzidine, 4-aminophenol, aniline and 1,2,7-triamino-8-hydroxynapthalene-3,6-disulfonic acid. SIP-mediated dye reduction was effective at wide pH range; however, kinetic analysis revealed fastest pseudo-first order dye reduction rate at acidic pH 3 (kd = 0.549 min−1) followed by pH 9 (kd = 0.383 min−1) and pH 7 (kd = 0.318 min−1). The daughter aromatic amines produced were partially adsorbed onto the SIP surface and maximally at neutral pH. The adsorption process followed pseudo-second order adsorption kinetics and Langmuir isotherm. Benzidine was adsorbed more than 4-aminophenol and aniline. BOD5 of the SIP-treated effluent increased from 0.93 to 12 mg/L showing improved biodegradability. The daughter amines were rapidly mineralized in the aerobic bioreactor within 6 h. Cost-effective SIP pre-treatment could accelerate mineralization and detoxification of recalcitrant wastewater.  相似文献   

3.
A new chemiluminescence biochemical oxygen demand (BODCL) determining method was studied by employing redox reaction between quinone and Baker's yeast. The measurement was carried out by utilizing luminol chemiluminescence (CL) reaction catalyzed by ferricyanide with oxidized quinone of menadione, and Saccharomyces cerevisiae using a batch-type luminometer. In this study, dimethyl sulfoxide was used as a solvent for menadione. After optimization of the measuring conditions, the CL response to hydrogen peroxide in the incubation mixture had a linear response between 0.1 and 100 μM H2O2 (r2 = 0.9999, 8 points, n = 3, average of relative standard deviation; R.S.D.av = 4.22%). Next, a practical relationship between the BODCL response and the glucose glutamic acid concentration was obtained over a range of 11-220 mg O2 L−1 (6 points, n = 3, R.S.D.av 3.71%) with a detection limit of 5.5 mg O2 L−1 when using a reaction mixture and incubating for only 5 min. Subsequently, the characterization of this method was studied. First, the BODCL responses to 16 pure organic substances were examined. Second, the influences of chloride ions, artificial seawater, and heavy metal ions on the BODCL response were investigated. Real sample measurements using river water were performed. Finally, BODCL responses were obtained for at least 8 days when the S. cerevisiae suspension was stored at 4 °C (response reduction, 69.9%; R.S.D. for 5 testing days, 18.7%). BODCL responses after 8 days and 24 days were decreased to 69.9% and 35.8%, respectively, from their original values (R.S.D. for 8 days involving 5 testing days, 18.7%).  相似文献   

4.
1,4-Disubstituted 1,3-dialkynes were obtained from the one-pot palladium/copper-catalyzed coupling reactions of aryl iodide and propiolic acid. The optimized catalytic system consisted of 5.0 mol % Pd(PPh3)2Cl2, 10 mol % dppb, 10 mol % CuI, 2.4 equiv of DBU, and 1.2 equiv of K2CO3. The coupling reaction was carried out at 30 °C for 6 h and subsequently at 80 °C for 3 h.  相似文献   

5.
A new thiol-reactive derivatizing reagent, 3-iodoacetylaminobenzanthrone (IAB) has been developed for thiol analysis in liquid chromatography. In aqueous methanol containing 15 mM pH 8.3 H3BO3-KCl-Na2CO3 buffer, IAB reacted with thiols at 35 °C for 15 min. The derivatives of IAB with glutathione (GSH), cysteine (Cys), homocysteine (Hcy) and N-acetylcysteine (Nac) were well separated on a C18 column with the mobile phase of methanol-water (50:50, v/v) containing 15 mM pH 2.7 H3cit-Na2HPO4 buffer. At λex/λem=420/540 nm, the detection limits were 20, 20, 55 and 40 fmol (1, 1, 2.3 and 2 nM), respectively, with a signal-to-noise ratio of 3. Owing to the preferential selectivity of iodoacetamidyl moiety to SH group, amino acids, aliphatic amines, phenol and alcohols had no obvious interference with the determination. The proposed method has been applied to the determination of thiols in human blood with recoveries of 98.5-105.3%.  相似文献   

6.
A simple, precise, and accurate hydrophilic interaction liquid chromatographic (HILIC) method has been developed for the determination of five aromatic amines in environmental water samples. Chromatography was carried out on a bare silica column, using a mixture of acetonitrile and a buffer of NaH2PO4–H3PO4 (pH 1.5, containing 10 mM NaH2PO4) (85:15, v/v) as a mobile phase at a flow rate of 1 mL min−1. Aromatic amines were detected by UV absorbance at 254 nm. The linear range of amines was good (r2 > 0.998) and limit of detection (LOD) within 0.02–0.2 mg L−1 (S/N = 3). The retention mechanism for the analytes under the optimum conditions was determined to be a combination of adsorption, partition and ionic interactions. The proposed method was applied to the environmental water samples. Aromatic amines were isolated from aqueous samples using solid-phase extraction (SPE) with Oasis HLB cartridges. Recoveries of greater than 75% with precision (RSD) less than 12% were obtained at amine concentrations of 5–50 μg L−1 from 100 mL river water and influents from a wastewater treatment plant (WWTP). The present HILIC technique proved to be a viable method for the analysis of aromatic amines in the environmental water samples.  相似文献   

7.
Yazdi AS  Es'haghi Z 《Talanta》2005,66(3):664-669
Liquid-liquid-liquid phase microextraction (LLLME) coupled with high-performance liquid chromatography (HPLC) for the analysis of some aromatic amines is described. These compounds were extracted from 4.0 mL aqueous sample that adjusted to pH 13 with, NaOH-NaCl buffer solution (donor phase, P1) into an organic phase (P2) 150 μl benzyl alcohol and ethyl acetate (2:1) and then back extracted into a microdrop of aqueous acceptor phase (P3), adjusted at pH 2, with Na2HPO4-H3PO4 buffer solution. The extraction time, T1 (from P1 to P2) was 20 min and T2 (from P2 to P3) was 1 min. Different crown ethers as complexing agents for amines were added to the acceptor phase to improve the extraction time. Factors such as organic solvents, extraction times, and addition of crown ethers to acceptor phase and stirring rate were optimised. The method was applied for determination of aromatic amines in wastewater samples. Enrichment factors ranged from 184.5 to 389.7. The linearity range was from 3 to 1000 ng/ml and the detection limits varied from 0.8 to 1.80 ng/ml. Relative standard deviations (%, n = 5) were found (at S/N 3) in the range of 1.9 to 10.1. All experiments were carried out at room temperature, 22 ± 0.5 °C.  相似文献   

8.
Asymmetrical flow field-flow fractionation (AsFlFFF) was coupled online with multiangle light scattering (MALS) to study the changes in the molecular weight and the size distribution of the corn starch during carboxymethylation. A corn starch was derivatized with sodium chloroacetate in alcoholic medium under alkaline condition to produce carboxymethyl starches (CMS) having various degrees of substitution (DS). The change in thermal characteristics and granule structure of the native corn starch and CMS were compared using Thermogravimetric analysis and scanning electron microscope. The ionic strength of the carrier liquid (water with 0.02% NaN3) was optimized by adding 50 mM NaNO3 to minimize the interactions among the starch molecules and between the starch molecules and the AsFlFFF membrane. A field-programmed AsFlFFF allowed determination of the molecular weight distribution (MWD) of starches within about 25 min. It was found that carboxymethylation of starch results in reduction in the molecular weight due to molecular degradation by the alkaline treatment. The weight-average molecular weight (Mw) was reduced down to about 4.4 × 105 from about 7.2 × 106 when DS was 0.14. It seems AsFlFFF coupled with MALS (AsFlFFF/MALS) is a useful tool for monitoring the changes taking place in the molecular weight and the size of starch during derivatization.  相似文献   

9.
Methods for short-term BOD analysis (BODst) based on ferricyanide mediator reduction have succeeded in overcoming some problems associated with the standard BOD test analysis (BOD5) such as long-term incubations (5 days), the need to dilute samples and low reproducibility. Here we present a bioassay where a Klebsiella pneumoniae environmental strain successfully reduces ferricyanide without de-aeration of the samples with linear BOD5 ranges between 30 and 500 mg L−1 or 30 and 200 mg L−1, using glucose-glutamic acid solution (GGA) or OECD standards respectively. We further propose a new assay termination solution that allows higher reproducibility and standardization of the cell-based assay, employing formaldehyde (22.7 g L−1) or other compounds in order to stop ferricyanide reduction without affecting the amperometric detection and therefore replace the centrifugation step normally used to stop microbial-driven reactions in ferricyanide-mediated bioassays. These improvements led to an accurate determination of real municipal wastewater samples.  相似文献   

10.
A conventional ion mobility spectrometry (IMS) was used to study atmospheric pressure evaporation of seven pure imidazolium and pyrrolidinium ionic liquids (ILs) with [Tf2N], [PF6], [BF4] and [fap] anions. The positive drift time spectra of the as-received samples measured at 220 °C exhibited close similarity; the peak at reduced mobility K0 = 1.99 cm2 V−1 s−1 was a dominant spectral pattern of imidazolium-based ILs. With an assumption that ILs vapor consists mainly of neutral ion pairs, which generate the parent cations in the reactant section of the detector, and using the reference data on the electrical mobility of ILs cations and clusters, this peak was attributed to the parent cation [emim]. Despite visible change in color of the majority of ILs after the heating at 220 °C for 5 h, essential distinctions between spectra of the as-received and heated samples were not observed. In negative mode, pronounced peaks were registered only for ILs with [fap] anion.  相似文献   

11.
To mimic the phosphate ester hydrolysis behavior of purple acid phosphatases the heterobimetallic complex [(BNPP)FeIIIL(μ-BNPP)NiII(H2O)](ClO4) (1) has been synthesized from the precursor complexes [FeIII(LH2)(H2O)2](ClO4)3·3H2O and [FeIII(LH2)(H2O)Cl](ClO4)2·2H2O. In these compounds, L2− is the anion of the tetraiminodiphenol macrocyclic ligand (H2L), while LH2 is the zwitterionic form in which the phenolic protons are shifted to the two metal-uncoordinated imine nitrogens, and BNPP is bis(4-nitrophenyl)phosphate. The X-ray crystal structure of compound 1 has been determined. The structure of 1 comprises of two edge-shared distorted octahedrons whose metal centers are bridged by two equatorial phenolate oxygens and two axially disposed oxygens of a BNPP ligand. The internuclear Fe?Ni distance is 3.083 Å. The high-spin iron(III) and nickel(II) in 1 are antiferromagnetically coupled (J = −7.1 cm−1; H = −2JS1·S2) with S = 3/2 spin ground state. The phosphodiesterase activity of 1 has been studied in 70:30 H2O-(CH3)2SO medium with NaBNPP as the substrate. The reaction rates have been measured by varying pH (3-10), temperature (25-50 °C), and with different concentrations of the substrate and complex at a fixed pH and temperature. Treatment of the rate data, obtained at pH 6.0 and at 35 °C, by the Michaelis-Menten approach have provided the following parameters: KM = 3.6 × 10−4 M, Vmax = 1.83 × 10−7 M s−1, kcat = 9.15 × 10−3 s−1. As compared to the uncatalyzed hydrolysis rate of BNPP, the kcat value is 8.3 × 108 times higher, showing that 1 behaves as an excellent model for phosphate ester hydrolysis.  相似文献   

12.
This paper presents a fully automated method for determining ten primary amines in wastewater at ng/L levels. The method is based on simultaneous derivatization with pentafluorobenzaldehyde (PFBAY) and headspace solid-phase microextraction (HS-SPME) followed by gas chromatography coupled to ion trap tandem mass spectrometry (GC–IT-MS–MS). The influence of main factors on the efficiency of derivatization and of HS-SPME is described in detail and optimized by a central composite design. For all species, the highest enrichment factors were achieved using a 85 μm polyacrylate (PA) fiber exposed in the headspace of stirred water samples (750 rpm) at pH 12, containing 360 g/L of NaCl, at 40 °C for 15 min. Under optimized conditions, the proposed method achieved detection limits ranging from 10 to 100 ng/L (except for cyclohexylamine). The optimized method was then used to determine the presence of primary amines in various types of wastewater samples, such as influent and effluent wastewater from municipal and industrial wastewater treatment plants (WWTPs) and a potable water treatment plant. Although the analysis of these samples revealed the presence of up to 1500 μg/L of certain primary amines in influent industrial wastewater, the concentration of these compounds in the effluent and in municipal and potable water was substantially lower, at low μg/L levels. The new derivatization–HS-SPME–GC–IT-MS–MS method is suitable for the fast, reliable and inexpensive determination of primary amines in wastewater in an automated procedure.  相似文献   

13.
Critical overview of literature data on the glass transition temperature Tg of poly(4-vinylphenol) PVPh revealed a large scatter of values ranging between 53 and 194 °C, which can only partially be attributed to molecular-mass effect. The reason could be seen in residual moisture and/or solvent in samples subjected to insufficient or even no drying. Based on selected two thirds of literature data, a regression equation is proposed for the dependence of Tg on 1/Mn. Two samples of commercial PVPh (Mn 11,500; Mw 22,100) and (Mn 19,700; Mw 40,900) were studied by DSC, ATR-FTIR, and SEC methods. A procedure of preparing well defined samples is proposed: PVPh vacuum-dried at 140 °C for 24 h is dissolved in tetrahydrofuran and precipitated in hexane. The precipitate is vacuum-dried at 40 °C for 24 h, weighed into a pierced DSC pan. After final vacuum drying at 140 °C for 24 h, the sample is analyzed. The PVPh samples treated in this way showed Tg of 175.0 °C and 179.6 °C, respectively.  相似文献   

14.
A new biochemical oxygen demand (BOD) sensing method employing a double-mediator (DM) system coupled with ferricyanide and a lipophilic mediator, menadione and the eukaryote Saccharomyces cerevisiae has been developed. In this study, a stirred micro-batch-type microbial sensor with a 560 μL volume and a two-electrode system was used. The chronamperometric response of this sensor had a linear response between 1 μM and 10 mM hexacyanoferrate(II) (r2 = 0.9995, 14 points, n = 3, average of relative standard deviation and R.S.D.av = 1.3%). Next, the optimum conditions for BOD estimation by the DM system (BODDM) were investigated and the findings revealed that the concentration of ethanol, used to dissolve menadione, influenced the sensor response and a relationship between the sensor output and glucose glutamic acid concentration was obtained over a range of 6.6-220 mg O2 L−1 (five points, n = 3, R.S.D.av 6.6%) when using a reaction mixture incubated for 15 min. Subsequently, the characterization of this sensor was studied. The sensor responses to 14 pure organic substances were compared with the conventional BOD5 method and other biosensor methods. Similar results with the BOD biosensor system using Trichosporon cutaneum were obtained. In addition, the influence of chloride ion, artificial seawater and heavy metal ions on the sensor response was investigated. A slight influence of 20.0 g L−1 chloride ion and artificial seawater (18.4 g L−1 Cl) was observed. Thus, the possibility of BOD determination for seawater was suggested in this study. In addition, no influence of the heavy metal ions (1.0 mg L−1 Fe3+, Cu2+, Mn2+, Cr3+ and Zn2+) was observed. Real sample measurements using both river water and seawater were performed and compared with those obtained from the BOD5 method. Finally, stable responses were obtained for 14 days when the yeast suspension was stored at 4 °C (response reduction, 93%; R.S.D. for 6 testing days, 9.1%).  相似文献   

15.
A method based on solid-phase microextraction (SPME) and gas chromatography with mass spectrometry (GC/MS) for the determination of 18 organophosphorus pesticides (OPPs) in textiles is described. Commercially available SPME fibers, 100 μm PDMS and 85 μm PA, were compared and 85 μm PA exhibited better performance to the OPPs. Various parameters affecting SPME, including extraction and desorption time, extraction temperature, salinity and pH, were studied. The optimized conditions were: 35 min extraction at 25 °C, 5% NaSO4 content, pH 7.0, and 3.5 min desorption in GC injector port at 250 °C. The linear ranges of the SPME-GC/MS method were 0.1-500 μg L−1 for most of the OPPs. The limits of detection (LODs) ranged from 0.01 μg L−1 (for bromophos-ethyl) to 55 μg L−1 (for azinphos-methyl) and the RSDs were between 0.66% and 9.22%. The optimized method was then used to analyze 18 OPPs in textile sample, and the determined recoveries were ranged from 76.7% to 126.8%. Moreover, the distribution coefficients of the OPPs between 85 μm PA fiber and simulative sweat solution (Kpa/s) were determined. The determined Kpa/s of the OPPs correlated well with their octanol-water partition coefficients (r = 0.764 and 0.678) and water solubility (= −0.892 and −0.863).  相似文献   

16.
Isotactic 6-armed star-shaped poly(vinyl alcohol) (PVA) with a narrow molecular weight distribution was successfully prepared by the living cationic polymerization of 6-armed star-shaped poly(tert-butyl vinyl ether) (PTBVE) and subsequent acidic ether cleavage. The PTBVE was synthesized using hexa(chloromethyl) melamine (HCMM) as a hexafunctional initiator and ZnI2 or ZnCl2 as an activator in toluene/MC (1/1 v/v) at −70 °C. A better living stability of PTBVE was obtained in the ZnCl2 activator system. The number average molecular weight and the polydispersity index of the 6-armed star-shaped PTBVE polymerized with ZnCl2 at −70 °C for 24 h were 156,000 g/mol and 1.47, respectively. The fraction of the mm sequence of the resulting PVA was 52%.  相似文献   

17.
A solid-phase microextraction (SPME) fiber coated with single walled carbon nanotubes (SWCNTs) was prepared by electrophoretic deposition and treated at 500 °C in H2 stream. In order to evaluate the characteristics of the obtained fiber, it was applied in the headspace solid-phase microextraction (HS-SPME) of benzene, toluene, ethylbenzene and xylenes (BTEX) from water sample and quantification by gas chromatography with flame ionization detection (GC-FID). The results indicated that the thermal treatment with H2 enhanced the extraction of the SWCNTs fiber for BTEX significantly. Thermal stability and durability of the fiber were also investigated, showing excellent stability up to 350 °C and life time over 120 times. In the comparison with the commercial CAR–PDMS fiber, the SWCNTs fiber showed similar and higher extraction efficiencies for BTEX. Under the optimized conditions, the linearity, LODs (S/N = 3) and LOQs (S/N = 10) of the method based on the SWCNTs fiber were 0.5–50.0, 0.005–0.026 and 0.017–0.088 μg/L, respectively. Repeatability for one fiber (n = 3) was in the range of 1.5–5.6% and fiber-to-fiber reproducibility (n = 3) was in the range of 4.2–8.3%. The proposed method was successfully applied in the analysis of BTEX compounds in seawater, tap water and wastewater from a paint plant.  相似文献   

18.
Three preconcentration techniques including solid phase extraction (SPE), dispersive liquid-liquid microextraction (DLLME) and stir-bar sorptive extraction (SBSE) have been optimized and compared for the analysis of six hypolipidaemic statin drugs (atorvastatin, fluvastatin, lovastatin, pravastatin, rosuvastatin and simvastatin) in wastewater and river water samples by high performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (HPLC/Q-TOF-MS). Parameters that affect the efficiency of the different extraction methods such as solid phase material, sample pH and elution solvent in the case of SPE; the type and volume of the extracting and dispersive solvent, pH of sample, salt addition and number of extraction steps in the case of DLLME; and the stirring time, pH of sample, sample volume and salt addition for SBSE were evaluated. SPE allowed the best recoveries for most of the analytes. Pravastatin was poorly extracted by DLLME and could not be determined. SBSE was only applicable for lovastatin and simvastatin. However, despite the limitations of having poorer recovery than SPE, DLLME and SBSE offered some advantages because they are simple, require low organic solvent volumes and present low matrix effects. DLLME required less time of analysis, and for SBSE the stir-bar was re-usable. SPE, DLLME and SBSE provided method detection limits in the range of 0.04-11.2 ng L−1, 0.10-17.0 ng L−1 for 0.52-2.00 ng L−1, respectively, in real samples. To investigate and compare their applicability, SPE, DLLME and SBSE procedures were applied to the detection of statin drugs in effluent wastewater and river samples.  相似文献   

19.
In the present study, an analytical procedure was developed for the determination of short-chain fatty acids (SCFAs) in landfill leachate and municipal wastewater employing injection of aqueous samples to gas chromatograph with flame ionization detector (GC-FID). Chromatographic conditions such as a separation system, injection volume, oven temperature program were investigated and selected. With two columns, one with a polar (polyethylene glycol) and one with a non-polar (dimethylpolisiloxane) stationary phase, good separation of SCFAs, containing from 2 to 8 carbon atoms, was achieved. The sample volume was 2 μL and the temperature program 80 °C (30 s) then 7 °C min−1 to 220 °C (2 min). LOQs values were below 0.25 mg L−1. The concentrations of the acids in the landfill leachate studied ranged from 0.45 ± 0,059 (average ± extended uncertainty) mg L−1 for pentanoic acid to 15.2 ± 0.73 mg L−1 for ethanoic acid. Concentrations of SCFAs in the municipal wastewater were lower than LOQs.  相似文献   

20.
The hydrogen peroxide-oxidation of o-phenylenediamine (OPD) catalyzed by horseradish peroxidase (HRP) at 37 °C in 50 mM phosphate buffer (pH 7.0) was studied by calorimetry. The apparent molar reaction enthalpy with respect to OPD and hydrogen peroxide were −447 ± 8 kJ mol−1 and −298 ± 9 kJ mol−1, respectively. Oxidation of OPD by H2O2 catalyzed by HRP (1.25 nM) at pH 7.0 and 37 °C follows a ping-pong mechanism. The maximum rate Vmax (0.91 ± 0.05 μM s−1), Michaelis constant for OPD Km,S (51 ± 3 μM), Michaelis constant for hydrogen peroxide Km,H2O2 (136 ± 8 μM), the catalytic constant kcat (364 ± 18 s−1) and the second-order rate constants k+1 = (2.7 ± 0.3) × 106 M−1 s−1 and k+5 = (7.1 ± 0.8) × 106 M−1 s−1 were obtained by the initial rate method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号