首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a method to construct any triangle-free 3-connected matroid starting from a matroid belonging to one of four infinite families and subsequently performing a sequence of small operations on it. This result extends to matroids a theorem proved by Kriesell for graphs.  相似文献   

2.
We show that the infinite matroid intersection conjecture of Nash-Williams implies the infinite Menger theorem proved by Aharoni and Berger in 2009.We prove that this conjecture is true whenever one matroid is nearly finitary and the second is the dual of a nearly finitary matroid, where the nearly finitary matroids form a superclass of the finitary matroids.In particular, this proves the infinite matroid intersection conjecture for finite-cycle matroids of 2-connected, locally finite graphs with only a finite number of vertex-disjoint rays.  相似文献   

3.
Using a quantum field theory renormalization group-like differential equation, we give a new proof of the recipe theorem for the Tutte polynomial for matroids. The solution of such an equation is in fact given by some appropriate characters of the Hopf algebra of isomorphic classes of matroids, characters which are then related to the Tutte polynomial for matroids. This Hopf algebraic approach also allows to prove, in a new way, a matroid Tutte polynomial convolution formula appearing in [W. Kook, V. Reiner, D. Stanton, A convolution formula for the Tutte polynomial, J. Combin. Theory Ser. B 76 (1999) 297–300] and [G. Etienne, M. Las Vergnas, External and internal elements of a matroid basis, Discrete Math. 179 (1998) 111–119].  相似文献   

4.
A characterization of the maximum-cardinality common independent sets of two matroids via an unbounded convex polyhedron is proved, confirming a conjecture of D.R. Fulkerson. A similar result, involving a bounded polyhedron, is the well-known matroid intersection polyhedron theorem of Jack Edmonds; Edmonds's theorem is used in the proof.  相似文献   

5.
In an earlier paper we proved the following theorem, which provides a strengthening of Tutte's well-known characterization of regular (totally unimodular) matroids: A binary matroid is regular if it does not have the Fano matroid or its dual as a series-minor (parallel-minor). In this paper we prove two theorems (Theorems 5.1 and 6.1) which provide the same kind of strengthening for Tutte's characterization of the graphic matroids (i.e., bond-matroids). One interesting aspect of these theorems is the introduction of the matroids of “type R”. It turns out that these matroids are, in at least two different senses, the smallest regular matroids which are neither graphic nor cographic (Theorems 6.2 and 6.3).  相似文献   

6.
The matroid matching problem (also known as matroid parity problem) has been intensively studied by several authors. Starting from very special problems, in particular the matching problem and the matroid intersection problem, good characterizations have been obtained for more and more general classes of matroids. The two most recent ones are the class of representable matroids and, later on, the class of algebraic matroids (cf. [4] and [2]). We present a further step of generalization, showing that a good characterization can also be obtained for the class of socalled pseudomodular matroids, introduced by Björner and Lovász (cf. [1]). A small counterexample is included to show that pseudomodularity still does not cover all matroids that behave well with respect to matroid matching.Supported by the German Research Association (Deutsche Forschungsgemeinschaft, SFB 303).  相似文献   

7.
A new matroid decomposition with several attractive properties leads to a new theorem of alternatives for matroids. A strengthened version of this theorem for binary matroids says roughly that to any binary matroid at least one of the following statements must apply: (1) the matroid is decomposable, (2) several elements can be removed (in any order) without destroying 3-connectivity, (3) the matroid belongs to one of 2 well-specified classes or has 10 elements or less. The latter theorem is easily specialized to graphic matroids. These theorems seem particularly useful for the determination of minimal violation matroids, a subject discussed in part II.  相似文献   

8.
9.
A matroidal family C is defined to be a collection of graphs such that, for any given graph G, the subgraphs of G isomorphic to a graph in C satisfy the matroid circuit-axioms. Here matroidal families closed under homeomorphism are considered. A theorem of Simöes-Pereira shows that when only finite connected graphs are allowed as members of C, two matroids arise: the cycle matroid and bicircular matroid. Here this theorem is generalized in two directions: the graphs are allowed to be infinite, and they are allowed to be disconnected. In the first case four structures result and in the second case two infinite families of matroids are obtained. The main theorem concerns the structures resulting when both restrictions are relaxed simultaneously.  相似文献   

10.
We extend the notion of representation of a matroid to algebraic structures that we call skew partial fields. Our definition of such representations extends Tutte?s definition, using chain groups. We show how such representations behave under duality and minors, we extend Tutte?s representability criterion to this new class, and we study the generator matrices of the chain groups. An example shows that the class of matroids representable over a skew partial field properly contains the class of matroids representable over a skew field. Next, we show that every multilinear representation of a matroid can be seen as a representation over a skew partial field. Finally we study a class of matroids called quaternionic unimodular. We prove a generalization of the matrix tree theorem for this class.  相似文献   

11.
Tutte has defined n-connection for matroids and proved a connected graph is n-connected if and only if its polygon matroid is n-connected. In this paper we introduce a new notion of connection in graphs, called n-biconnection, and prove an analogous theorem for graphs and their bicircular matroids. Results concerning 3-biconnected graphs are also presented.  相似文献   

12.
Signed graphs     
A signed graph is a graph with a sign attached to each arc. This article introduces the matroids of signed graphs, which generalize both the polygon matroids and the even-circle (or unoriented cycle) matroids of ordinary graphs. The concepts of balance, switching, restriction and contraction, double covering graphs, and linear representation of signed graphs are treated in terms of the matroid, and a matrix-tree theorem for signed graphs is proved. The examples treated include the all-positive and all-negative graphs (whose matroids are the polygon and even-circle matroids), sign-symmetric graphs (related to the classical root systems), and signed complete graphs (equivalent to two-graphs).Replacing the sign group by an arbitrary group leads to voltage graphs. Most of our results on signed graphs extend to all voltage graphs.  相似文献   

13.
It is well known that for any element of a connected matroid, either the deletion or the contraction of that element preserves connectivity. We prove a simple and natural generalization to 3-connected matroids. This result is used to prove Seymour's generalization of a theorem of Kelmans.  相似文献   

14.
Frame matroids and lifted‐graphic matroids are two interesting generalizations of graphic matroids. Here, we introduce a new generalization, quasi‐graphic matroids, that unifies these two existing classes. Unlike frame matroids and lifted‐graphic matroids, it is easy to certify that a 3‐connected matroid is quasi‐graphic. The main result is that every 3‐connected representable quasi‐graphic matroid is either a lifted‐graphic matroid or a frame matroid.  相似文献   

15.
It has recently been shown that infinite matroids can be axiomatized in a way that is very similar to finite matroids and permits duality. This was previously thought impossible, since finitary infinite matroids must have non-finitary duals.In this paper we illustrate the new theory by exhibiting its implications for the cycle and bond matroids of infinite graphs. We also describe their algebraic cycle matroids, those whose circuits are the finite cycles and double rays, and determine their duals. Finally, we give a sufficient condition for a matroid to be representable in a sense adapted to infinite matroids. Which graphic matroids are representable in this sense remains an open question.  相似文献   

16.
This paper deals with a geometric construction of algebraic non-realizability proofs for certain oriented matroids. As main result we obtain an algorithm which generates a (bi-quadratic) final polynomial [3], [5] for any non-euclidean oriented matroid. Here we apply the results of Edmonds, Fukuda and Mandel [6], [7] concerning non-degenerate cycling of linear programs in non-euclidean oriented matroids.  相似文献   

17.
We extend the notion of a minor from matroids to simplicial complexes. We show that the class of matroids, as well as the class of independence complexes, is characterized by a single forbidden minor. Inspired by a recent result of Aharoni and Berger, we investigate possible ways to extend the matroid intersection theorem to simplicial complexes.  相似文献   

18.
We give a short proof that every finite graph (or matroid) has a tree-decomposition that displays all maximal tangles.This theorem for graphs is a central result of the graph minors project of Robertson and Seymour and the extension to matroids is due to Geelen, Gerards and Whittle.  相似文献   

19.
We prove the following theorem: A binary matroid is regular (totally unimodular) if and only if it has no submatroid that is a series extension of a Fano matroid or its dual. This theorem may be viewed as strengthening Tutte's celebrated characterization of regular matroids in the spirit of Kuratowski's theorem on planar graphs.  相似文献   

20.
The polymatroid matching problem, also known as the matchoid problem or the matroid parity problem, is polynomially unsolvable in general but solvable for linear matroids. The solution for linear matroids is analysed and results concerning arbitrary matroids are given from which the linear case follows immediately. The same general result is then applied to find a maximum circuitfree partial hypergraph of a 3-uniform hypergraph, to generalize a theorem of Mader on packing openly disjoint paths starting and ending in a given set, and to study a problem in structural rigidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号