首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We generalise in three different directions two well-known results in universal algebra. Grätzer, Lakser and P?onka proved that independent subvarieties \({\mathcal{V}_{1}, \mathcal{V}_{2}}\) of a variety \({\mathcal{V}}\) are disjoint and such that their join \({\mathcal{V}_{1} \vee \mathcal{V}_{2}}\) (in the lattice of subvarieties of \({\mathcal{V}}\)) is their direct product \({\mathcal{V}_{1} \times \mathcal{V}_{2}}\) . Jónsson and Tsinakis provided a partial converse to this result: if \({\mathcal{V}}\) is congruence permutable and \({\mathcal{V}_{1}, \mathcal{V}_{2}}\) are disjoint, then they are independent (and so \({\mathcal{V}_{1} \vee \mathcal{V}_{2} = \mathcal{V}_{1} \times \mathcal{V}_{2}}\)). We show that (i) if \({\mathcal{V}}\) is subtractive, then Jónsson’s and Tsinakis’ result holds under some minimal assumptions; (ii) if \({\mathcal{V}}\) satisfies some weakened permutability conditions, then disjointness implies a generalised notion of independence and \({\mathcal{V}_{1} \vee \mathcal{V}_{2}}\) is the subdirect product of \({\mathcal{V}_{1}}\) and \({\mathcal{V}_2}\) ; (iii) the same holds if \({\mathcal{V}}\) is congruence 3-permutable.  相似文献   

2.
Let \({\mathcal{P} \subset \mathbb{R}^{d}}\) and \({\mathcal{Q} \subset \mathbb{R}^{e}}\) be integral convex polytopes of dimension d and e which contain the origin of \({\mathbb{R}^{d}}\) and \({\mathbb{R}^{e}}\), respectively. We say that an integral convex polytope \({\mathcal{P}\subset \mathbb{R}^{d}}\) possesses the integer decomposition property if, for each \({n\geq1}\) and for each \({\gamma \in n\mathcal{P}\cap\mathbb{Z}^{d}}\), there exist \({\gamma^{(1)}, . . . , \gamma^{(n)}}\) belonging to \({\mathcal{P}\cap\mathbb{Z}^{d}}\) such that \({\gamma = \gamma^{(1)} +. . .+\gamma^{(n)}}\). In the present paper, under some assumptions, the necessary and sufficient condition for the free sum of \({\mathcal{P}}\) and \({\mathcal{Q}}\) to possess the integer decomposition property will be presented.  相似文献   

3.
Following Boros-Moll, a sequence (a n ) is m-log-concave if \({\mathcal{L}^{j}(a_{n})\geqslant0}\) for all j =  0, 1, . . . , m. Here, \({\mathcal{L}}\) is the operator defined by \({\mathcal{L}(a_{n}) = a^{2}_{n}-a_{n-1}a_{n+1}}\). By a criterion of Craven-Csordas and McNamara-Sagan it is known that a sequence is ∞-log-concave if it satisfies the stronger inequality \({a^{2}_{k}\geqslant ra_{k-1}a_{k+1}}\) for large enough r. On the other hand, a recent result of Brändén shows that ∞-log-concave sequences include sequences whose generating polynomial has only negative real roots. In this paper, we investigate sequences which are fixed by a power of the operator \({\mathcal{L}}\) and are therefore ∞-log-concave for a very different reason. Surprisingly, we find that sequences fixed by the non-linear operators \({\mathcal{L}}\) and \({\mathcal{L}^{2}}\) are, in fact, characterized by a linear 4-term recurrence. In a final conjectural part, we observe that positive sequences appear to become ∞-log-concave if convoluted with themselves a finite number of times.  相似文献   

4.
Let \(G=G(k)\) be a connected reductive group over a p-adic field k. The smooth (and tempered) complex representations of G can be considered as the nondegenerate modules over the Hecke algebra \({\mathcal {H}}={\mathcal {H}}(G)\) and the Schwartz algebra \({\mathcal {S}}={\mathcal {S}}(G)\) forming abelian categories \({\mathcal {M}}(G)\) and \({\mathcal {M}}^t(G)\), respectively. Idempotents \(e\in {\mathcal {H}}\) or \({\mathcal {S}}\) define full subcategories \({\mathcal {M}}_e(G)= \{V : {\mathcal {H}}eV=V\}\) and \({\mathcal {M}}_e^t(G)= \{V : {\mathcal {S}}eV=V\}\). Such an e is said to be special (in \({\mathcal {H}}\) or \({\mathcal {S}}\)) if the corresponding subcategory is abelian. Parallel to Bernstein’s result for \(e\in {\mathcal {H}}\) we will prove that, for special \(e \in {\mathcal {S}}\), \({\mathcal {M}}_e^t(G) = \prod _{\Theta \in \theta _e} {\mathcal {M}}^t(\Theta )\) is a finite direct product of component categories \({\mathcal {M}}^t(\Theta )\), now referring to connected components of the center of \({\mathcal {S}}\). A special \(e\in {\mathcal {H}}\) will be also special in \({\mathcal {S}}\), but idempotents \(e\in {\mathcal {H}}\) not being special can become special in \({\mathcal {S}}\). To obtain conditions we consider the sets \(\mathrm{Irr}^t(G) \subset \mathrm{Irr}(G)\) of (tempered) smooth irreducible representations of G, and we view \(\mathrm{Irr}(G)\) as a topological space for the Jacobson topology defined by the algebra \({\mathcal {H}}\). We use this topology to introduce a preorder on the connected components of \(\mathrm{Irr}^t(G)\). Then we prove that, for an idempotent \(e \in {\mathcal {H}}\) which becomes special in \({\mathcal {S}}\), its support \(\theta _e\) must be saturated with respect to that preorder. We further analyze the above decomposition of \({\mathcal {M}}_e^t(G)\) in the case where G is k-split with connected center and where \(e = e_J \in {\mathcal {H}}\) is the Iwahori idempotent. Here we can use work of Kazhdan and Lusztig to relate our preorder on the support \(\theta _{e_J}\) to the reverse of the natural partial order on the unipotent classes in G. We finish by explicitly computing the case \(G=GL_n\), where \(\theta _{e_J}\) identifies with the set of partitions of n. Surprisingly our preorder (which is a partial order now) is strictly coarser than the reverse of the dominance order on partitions.  相似文献   

5.
We introduce a new generalization of Alan Day’s doubling construction. For ordered sets \(\mathcal {L}\) and \(\mathcal {K}\) and a subset \(E \subseteq \ \leq _{\mathcal {L}}\) we define the ordered set \(\mathcal {L} \star _{E} \mathcal {K}\) arising from inflation of \(\mathcal {L}\) along E by \(\mathcal {K}\). Under the restriction that \(\mathcal {L}\) and \(\mathcal {K}\) are finite lattices, we find those subsets \(E \subseteq \ \leq _{\mathcal {L}}\) such that the ordered set \(\mathcal {L} \star _{E} \mathcal {K}\) is a lattice. Finite lattices that can be constructed in this way are classified in terms of their congruence lattices.A finite lattice is binary cut-through codable if and only if there exists a 0?1 spanning chain \(\left \{\theta _{i}\colon 0 \leq i \leq n \right \}\) in \(Con(\mathcal {L})\) such that the cardinality of the largest block of ?? i /?? i?1 is 2 for every i with 1≤in. These are exactly the lattices that can be constructed by inflation from the 1-element lattice using only the 2-element lattice. We investigate the structure of binary cut-through codable lattices and describe an infinite class of lattices that generate binary cut-through codable varieties.  相似文献   

6.
Let k be a field of characteristic zero. Let V be a k-scheme of finite type, i.e., a k-variety, which is integral. We prove that if the associated arc scheme \({\mathcal{L}_{\infty}(V)}\) is reduced, then the \({\mathcal{O}_{V}}\)-Module \({\Omega_{V/k}^{1}}\) is torsion-free. Then if the k-variety V is assumed to be locally a complete intersection (lci), we deduce that the k-variety V is normal. We also obtain the following consequence: for every class \({\mathfrak{C}}\) of integral k-curves which satisfies the Berger conjecture, and for every \({\mathscr{C} \in \mathfrak{C}}\), the k-curve \({\mathscr{C}}\) is smooth if and only if \({\mathcal{L}(\mathscr{C})}\) is reduced.  相似文献   

7.
We study the local Hecke algebra \({\mathcal{H}_{G}(K)}\) for \({G = {\rm GL}_{n}}\) and K a non-archimedean local field of characteristic zero. We show that for \({G = {\rm GL}_{2}}\) and any two such fields K and L, there is a Morita equivalence \({\mathcal{H}_{G}(K) \sim_{M} \mathcal{H}_{G}(L)}\), by using the Bernstein decomposition of the Hecke algebra and determining the intertwining algebras that yield the Bernstein blocks up to Morita equivalence. By contrast, we prove that for \({G = {\rm GL}_{n}}\), there is an algebra isomorphism \({\mathcal{H}_{G}(K) \cong \mathcal{H}_{G}(L)}\) which is an isometry for the induced \({L^1}\)-norm if and only if there is a field isomorphism \({K \cong L}\).  相似文献   

8.
We say that an ideal \( \mathrm{\mathcal{I}}\) has property (T) if for every \( \mathrm{\mathcal{I}}\)-convergent series \( {\sum}_{n=1}^{\infty }{x}_n \), there exists a set A\( \mathrm{\mathcal{I}}\) such that ∑n?∈??\Ax n converges in the usual sense. The main aim of this paper is to focus on several different classes of ideals, such as summable ideals, F σ ideals, and matrix summability ideals, and to show that they do not have the mentioned property.  相似文献   

9.
Given a model \(\mathcal {M}\) of set theory, and a nontrivial automorphism j of \(\mathcal {M}\), let \(\mathcal {I}_{\mathrm {fix}}(j)\) be the submodel of \(\mathcal {M}\) whose universe consists of elements m of \(\mathcal {M}\) such that \(j(x)=x\) for every x in the transitive closure of m (where the transitive closure of m is computed within \(\mathcal {M}\)). Here we study the class \(\mathcal {C}\) of structures of the form \(\mathcal {I}_{\mathrm {fix}}(j)\), where the ambient model \(\mathcal {M}\) satisfies a frugal yet robust fragment of \(\mathrm {ZFC}\) known as \(\mathrm {MOST}\), and \(j(m)=m\) whenever m is a finite ordinal in the sense of \(\mathcal {M}.\) Our main achievement is the calculation of the theory of \(\mathcal {C}\) as precisely \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\). The following theorems encapsulate our principal results: Theorem A. Every structure in \(\mathcal {C}\) satisfies \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm { Collection}\). Theorem B. Each of the following three conditions is sufficient for a countable structure \(\mathcal {N}\) to be in \(\mathcal {C}\):(a) \(\mathcal {N}\) is a transitive model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(b) \(\mathcal {N}\) is a recursively saturated model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(c) \(\mathcal {N}\) is a model of \(\mathrm {ZFC}\). Theorem C. Suppose \(\mathcal {M}\) is a countable recursively saturated model of \(\mathrm {ZFC}\) and I is a proper initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is closed under exponentiation and contains \(\omega ^\mathcal {M}\) . There is a group embedding \(j\longmapsto \check{j}\) from \(\mathrm {Aut}(\mathbb {Q})\) into \(\mathrm {Aut}(\mathcal {M})\) such that I is the longest initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is pointwise fixed by \(\check{j}\) for every nontrivial \(j\in \mathrm {Aut}(\mathbb {Q}).\) In Theorem C, \(\mathrm {Aut}(X)\) is the group of automorphisms of the structure X, and \(\mathbb {Q}\) is the ordered set of rationals.  相似文献   

10.
Let \({ \mathcal {F}}\) be a saturated formation and G a finite group such that \({N_{G} (H^{\mathcal {F}})/C_{G} (H^{\mathcal {F}})\cong Inn(H^{\mathcal {F}})}\) for every subgroup H of G. If the minimal non-\({ \mathcal {F}}\)-group is soluble, then \({G \in \mathcal {F}}\).  相似文献   

11.
Given an i.i.d sample (Y i , Z i ), taking values in \({\mathbb{R}^{d'}\times\mathbb{R}^d}\), we consider a collection Nadarya–Watson kernel estimators of the conditional expectations \({\mathbb{E}( <\,c_g(z),g(Y)>+d_g(z)\mid Z=z)}\), where z belongs to a compact set \({H\subset \mathbb{R}^d}\), g a Borel function on \({\mathbb{R}^{d'}}\) and c g (·), d g (·) are continuous functions on \({\mathbb{R}^d}\). Given two bandwidth sequences \({h_n<\mathfrak{h}_n}\) fulfilling mild conditions, we obtain an exact and explicit almost sure limit bounds for the deviations of these estimators around their expectations, uniformly in \({g\in\mathcal{G},\;z\in H}\) and \({h_n\le h\le \mathfrak{h}_n}\) under mild conditions on the density f Z , the class \({\mathcal{G}}\), the kernel K and the functions c g (·), d g (·). We apply this result to prove that smoothed empirical likelihood can be used to build confidence intervals for conditional probabilities \({\mathbb{P}( Y\in C\mid Z=z)}\), that hold uniformly in \({z\in H,\; C\in \mathcal{C},\; h\in [h_n,\mathfrak{h}_n]}\). Here \({\mathcal{C}}\) is a Vapnik–Chervonenkis class of sets.  相似文献   

12.
Let \({\mathcal{R}}\) be a unital commutative ring and \({\mathcal{M}}\) be a 2-torsion free central \({\mathcal{R}}\) -bimodule. In this paper, for \({n \geqq 3}\), we show that every local derivation from M n (\({\mathcal{R}}\)) into M n (\({\mathcal{M}}\)) is a derivation.  相似文献   

13.
Let \(\mathcal{U}\) be the class of all unipotent monoids and \(\mathcal{B}\) the variety of all bands. We characterize the Malcev product \(\mathcal{U} \circ \mathcal{V}\) where \(\mathcal{V}\) is a subvariety of \(\mathcal{B}\) low in its lattice of subvarieties, \(\mathcal{B}\) itself and the subquasivariety \(\mathcal{S} \circ \mathcal{RB}\), where \(\mathcal{S}\) stands for semilattices and \(\mathcal{RB}\) for rectangular bands, in several ways including by a set of axioms. For members of some of them we describe the structure as well. This succeeds by using the relation \(\widetilde{\mathcal{H}}= \widetilde{\mathcal{L}} \cap \widetilde{\mathcal{R}}\), where \(a\;\,\widetilde{\mathcal{L}}\;\,b\) if and only if a and b have the same idempotent right identities, and \(\widetilde{\mathcal{R}}\) is its dual.We also consider \((\mathcal{U} \circ \mathcal{RB}) \circ \mathcal{S}\) which provides the motivation for this study since \((\mathcal{G} \circ \mathcal{RB}) \circ \mathcal{S}\) coincides with completely regular semigroups, where \(\mathcal{G}\) is the variety of all groups. All this amounts to a generalization of the latter: \(\mathcal{U}\) instead of \(\mathcal{G}\).  相似文献   

14.
In this note, we find a monomial basis of the cyclotomic Hecke algebra \({\mathcal{H}_{r,p,n}}\) of G(r,p,n) and show that the Ariki-Koike algebra \({\mathcal{H}_{r,n}}\) is a free module over \({\mathcal{H}_{r,p,n}}\), using the Gröbner-Shirshov basis theory. For each irreducible representation of \({\mathcal{H}_{r,p,n}}\), we give a polynomial basis consisting of linear combinations of the monomials corresponding to cozy tableaux of a given shape.  相似文献   

15.
For a family of interpolation norms \({\| \cdot \|_{1,2,s}}\) on \({\mathbb{R}^{n}}\), we provide a distribution over random matrices \({\Phi_s \in \mathbb{R}^{m \times n}}\) parametrized by sparsity level s such that for a fixed set X of K points in \({\mathbb{R}^{n}}\), if \({m \geq C s \log(K)}\) then with high probability, \({\frac{1}{2}\| \varvec{x} \|_{1,2,s} \leq \| \Phi_s (\varvec{x}) \|_1 \leq 2 \| \varvec{x} \|_{1,2,s}}\) for all \({\varvec{x} \in X}\). Several existing results in the literature roughly reduce to special cases of this result at different values of s: For s = n, \({\| \varvec{x} \|_{1,2,n}\equiv \| \varvec{x} \|_{1}}\) and we recover that dimension reducing linear maps can preserve the ?1-norm up to a distortion proportional to the dimension reduction factor, which is known to be the best possible such result. For s = 1, \({\| \varvec{x} \|_{1,2,1}\equiv \| \varvec{x} \|_{2}}\), and we recover an ?2/?1 variant of the Johnson–Lindenstrauss Lemma for Gaussian random matrices. Finally, if \({\varvec{x}}\) is s- sparse, then \({\| \varvec{x} \|_{1,2,s} = \| \varvec{x} \|_1}\) and we recover that s-sparse vectors in \({\ell_1^n}\) embed into \({\ell_1^{\mathcal{O}(s \log(n))}}\) via sparse random matrix constructions.  相似文献   

16.
Let \(\mathcal {F}_{0}=\{f_{i}\}_{i\in \mathbb {I}_{n_{0}}}\) be a finite sequence of vectors in \(\mathbb {C}^{d}\) and let \(\mathbf {a}=(a_{i})_{i\in \mathbb {I}_{k}}\) be a finite sequence of positive numbers, where \(\mathbb {I}_{n}=\{1,\ldots , n\}\) for \(n\in \mathbb {N}\). We consider the completions of \(\mathcal {F}_{0}\) of the form \(\mathcal {F}=(\mathcal {F}_{0},\mathcal {G})\) obtained by appending a sequence \(\mathcal {G}=\{g_{i}\}_{i\in \mathbb {I}_{k}}\) of vectors in \(\mathbb {C}^{d}\) such that ∥g i 2 = a i for \(i\in \mathbb {I}_{k}\), and endow the set of completions with the metric \(d(\mathcal {F},\tilde {\mathcal {F}}) =\max \{ \,\|g_{i}-\tilde {g}_{i}\|: \ i\in \mathbb {I}_{k}\}\) where \(\tilde {\mathcal {F}}=(\mathcal {F}_{0},\,\tilde {\mathcal {G}})\). In this context we show that local minimizers on the set of completions of a convex potential P φ , induced by a strictly convex function φ, are also global minimizers. In case that φ(x) = x 2 then P φ is the so-called frame potential introduced by Benedetto and Fickus, and our work generalizes several well known results for this potential. We show that there is an intimate connection between frame completion problems with prescribed norms and frame operator distance (FOD) problems. We use this connection and our results to settle in the affirmative a generalized version of Strawn’s conjecture on the FOD.  相似文献   

17.
If every k-membered subfamily of a family of plane convex bodies has a line transversal, then we say that this family has property T(k). We say that a family \({\mathcal{F}}\) has property \({T-m}\), if there exists a subfamily \({\mathcal{G} \subset \mathcal{F}}\) with \({|\mathcal{F} - \mathcal{G}| \le m}\) admitting a line transversal. Heppes [7] posed the problem whether there exists a convex body K in the plane such that if \({\mathcal{F}}\) is a finite T(3)-family of disjoint translates of K, then m = 3 is the smallest value for which \({\mathcal{F}}\) has property \({T-m}\). In this paper, we study this open problem in terms of finite T(3)-families of pairwise disjoint translates of a regular 2n-gon \({(n \ge 5)}\). We find out that, for \({5 \le n \le 34}\), the family has property \({T - 3}\) ; for \({n \ge 35}\), the family has property \({T - 2}\).  相似文献   

18.
An operator \({T\in{\mathcal{L}}({\mathcal{H}})}\) is said to be complex symmetric if there exists a conjugation C on \({{\mathcal H}}\) such that \({T= CT^{\ast}C}\). In this paper, we study the spectral radius algebras for complex symmetric operators. In particular, we prove that if A is a complex symmetric operator, then the spectral radius algebra \({{\mathcal B}_{A}}\) associated with A has a nontrivial invariant subspace under some conditions. Finally, we give some relations between \({P_{\tilde{A}}}\) and \({P_{\widetilde{A^{\ast}}}}\) (defined below) when A is complex symmetric.  相似文献   

19.
Let \({\mathcal{L}(X)}\) be the algebra of all bounded operators on a Banach space X. \({\theta:G\rightarrow \mathcal{L}(X)}\) denotes a strongly continuous representation of a topological abelian group G on X. Set \({\sigma^1(\theta(g)):=\{\lambda/|\lambda|,\lambda\in\sigma(\theta(g))\}}\), where σ(θ(g)) is the spectrum of θ(g) and \({\Sigma:=\{g\in G/\enskip\text{there is no} \enskip P\in \mathcal{P}/P\subseteq \sigma^1(\theta(g))\}}\), where \({\mathcal{P}}\) is the set of regular polygons of \({\mathbb{T}}\) (we call polygon in \({\mathbb{T}}\) the image by a rotation of a closed subgroup of \({\mathbb{T}}\), the unit circle of \({\mathbb{C}}\)). We prove here that if G is a locally compact and second countable abelian group, then θ is uniformly continuous if and only if Σ is non-meager.  相似文献   

20.
The aim of this paper is to study the problem of which solvable Lie groups admit an Einstein left invariant metric. The space \({\mathcal{N}}\) of all nilpotent Lie brackets on \({\mathbb{R}^n}\) parametrizes a set of (n + 1)-dimensional rank-one solvmanifolds \({\{S_{\mu}:\mu\in\mathcal{N}\}}\), containing the set of all those which are Einstein in that dimension. The moment map for the natural GL n -action on \({\mathcal{N}}\), evaluated at \({\mu\in\mathcal{N}}\), encodes geometric information on S μ and suggests the use of strong results from geometric invariant theory. For instance, the functional on \({\mathcal{N}}\) whose critical points are precisely the Einstein S μ ’s, is the square norm of this moment map. We use a GL n -invariant stratification for the space \({\mathcal{N}}\) and show that there is a strong interplay between the strata and the Einstein condition on the solvmanifolds S μ . As an application, we obtain criteria to decide whether a given nilpotent Lie algebra can be the nilradical of a rank-one Einstein solvmanifold or not. We find several examples of \({\mathbb{N}}\)-graded (even 2-step) nilpotent Lie algebras which are not. A classification in the 7-dimensional, 6-step case and an existence result for certain 2-step algebras associated to graphs are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号