首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider integro-differential equations that are an abstract form of the well-known Gurtin-Pipkin equation. We obtain representations of strong solutions of these equations in the form of series in the exponentials corresponding to points of spectrum of the symbols of such equations.  相似文献   

2.
用算子半群理论研究了带有重试排队的M/G/1系统.通过解算子方程和预解方程,证明了0是系统算子的本征值,且为虚轴上唯一的谱点.从而得出了当时间趋于无穷时系统时间依赖解收敛于稳态解的结论.  相似文献   

3.
The Balescu–Lenard equation from plasma physics is widely considered to include a highly accurate correction to Landau's fundamental collision operator. Yet so far it has seen very little mathematical study. We perform an extensive linearized analysis of this equation, which includes determining the asymptotic behavior of the new components of the linearized operator and establishing time decay rates for the linearized equation.  相似文献   

4.
In this paper, we use the combination of energy method and Fourier analysis to obtain the optimal time decay of the Boltzmann equation with frictional force towards equilibrium. Precisely speaking, we decompose the equation into macroscopic and microscopic partitions and perform the energy estimation. Then, we construct a special solution operator to a linearized equation without source term and use Fourier analysis to obtain the optimal decay rate to this solution operator. Finally, combining the decay rate with the energy estimation for nonlinear terms, the optimal decay rate to the Boltzmann equation with frictional force is established.  相似文献   

5.
The present work considers a nonlinear abstract hyperbolic equation with a self-adjoint positive definite operator, which represents a generalization of the Kirchhoff string equation. A symmetric three-layer semi-discrete scheme is constructed for an approximate solution of a Cauchy problem for this equation. Value of the gradient in the nonlinear term of the scheme is taken at the middle point. It makes possible to find an approximate solution at each time step by inverting the linear operator. Local convergence of the constructed scheme is proved. Numerical calculations for different model problems are carried out using this scheme.  相似文献   

6.
丛文相 《应用数学》1995,8(4):389-395
本文针对地震勘探中提出一类重要的2-D波动方程反演问题,通过定义一个新的非线性算子将2-D波动方程的反演问题归结为一个新的非线性算子方程,详细讨论了非线性算子的性质,给出了求解反问题的迭代方法,并证明了这种迭代方法的收敛性。  相似文献   

7.
We extend the concept of time operator for general semigroups and construct a non-self-adjoint time operator for the diffusion equation which is intertwined with the unilateral shift. We obtain the spectral resolution, the age eigenstates and a new shift representation of the solution of the diffusion equation. Based on previous work we obtain similarly a self-adjoint time operator for Relativistic Diffusion.  相似文献   

8.
In this paper,we first establish the global existence and asymptotic behavior of solutions by using the semigroup method and multiplicative techniques,then further prove the existence of a uniform attractor for Timoshenko systems with Gurtin-Pipkin thermal law by using the method of uniform contractive functions.The main advantages of this method is that we need only to verify compactness condition with the same type of energy estimates as that for establishing absorbing sets.Moreover,we also investigate an alternative result of solutions to the semilinear Timoshenko systems by virtue of the semigroup method.  相似文献   

9.
In this paper, we focus on maximum principles of a time–space fractional diffusion equation. Maximum principles for classical solution and weak solution are all obtained by using properties of the time fractional derivative operator and the fractional Laplace operator. We deduce maximum principles for a full fractional diffusion equation, other than time-fractional and spatial-integer order diffusion equations.  相似文献   

10.
We consider the inverse problem of identifying a general source term, which is a function of both time variable and the spatial variable, in a parabolic PDE from the knowledge of boundary measurements of the solution on some portion of the lateral boundary. We transform this inverse problem into a problem of solving a compact linear operator equation. For the regularization of the operator equation with noisy data, we employ the standard Tikhonov regularization, and its finite dimensional realization is done using a discretization procedure involving the space $L^2(0,\tau;L^2(Ω))$. For illustrating the specification of an a priori source condition, we have explicitly obtained the range space of the adjoint of the operator involved in the operator equation.  相似文献   

11.
The paper is devoted to the investigation of a parabolic equation with the Preisach operator under the time derivative. The model equation appears in the context of soil water hysteresis. Under suitable assumptions an existence result is obtained by using an implicit time discretization scheme, a priori estimates and passage to the limit in the convexity domain of the Preisach operator.  相似文献   

12.

In this paper we first deduce the estimates on the linearized Landau operator with Coulomb potential and then analyze its spectrum structure by using semigroup theory and linear operator perturbation theory. Based on these estimates, we give the precise time decay rate estimates on the semigroup generated by the linearized Landau operator so that the optimal time decay rates of the nonlinear Landau equation follow. In addition, we present a similar result for the non-angular cutoff Boltzmann equation with soft potentials.

  相似文献   

13.
In this paper we study a one-dimensional evolution problem arising in the theory of linear thermoviscoelasticity with hereditary heat conduction. Depending on the istantaneous conductivity K0, both Coleman-Gurtin (K0>0) and Gurtin-Pipkin (K0=0) heat flow theories are involved. In any case, the exponential stability of the corresponding semigroup is proved for a class of memory functions including weakly singular kernels. In order to achieve the exponential decay of the energy, we assume that mechanical and thermal memory kernels decay exponentially for large time. Entrata in Redazione il 23 luglio 1998.  相似文献   

14.
In this paper we derive a discretisation of the equation of quasi-static elasticity in homogenization in form of a variational formulation and the so-called Lippmann–Schwinger equation, in anisotropic spaces of translates of periodic functions. We unify and extend the truncated Fourier series approach, the constant finite element ansatz and the anisotropic lattice derivation. The resulting formulation of the Lippmann–Schwinger equation in anisotropic translation invariant spaces unifies and analyses for the first time both the Fourier methods and finite element approaches in a common mathematical framework. We further define and characterize the resulting periodised Green operator. This operator coincides in case of a Dirichlet kernel corresponding to a diagonal matrix with the operator derived for the Galerkin projection stemming from the truncated Fourier series approach and to the anisotropic lattice derivation for all other Dirichlet kernels. Additionally, we proof the boundedness of the periodised Green operator. The operator further constitutes a projection if and only if the space of translates is generated by a Dirichlet kernel. Numerical examples for both de la Vallée Poussin means and Box splines illustrate the flexibility of this framework.  相似文献   

15.
An inverse problem of determining a time‐dependent source term from the total energy measurement of the system (the over‐specified condition) for a space‐time fractional diffusion equation is considered. The space‐time fractional diffusion equation is obtained from classical diffusion equation by replacing time derivative with fractional‐order time derivative and Sturm‐Liouville operator by fractional‐order Sturm‐Liouville operator. The existence and uniqueness results are proved by using eigenfunction expansion method. Several special cases are discussed, and particular examples are provided.  相似文献   

16.
Recently, the following novel method for proving the existence of solutions for certain linear time-invariant PDEs was introduced: The operator associated with a given PDE is represented by a (larger) operator with an internal loop. If the larger operator (without the internal loop) generates a contraction semigroup, the internal loop is accretive, and some non-restrictive technical assumptions are fulfilled, then the original operator generates a contraction semigroup as well. Beginning with the undamped wave equation, this general idea can be applied to show that the heat equation and wave equations with damping are well-posed. In the present paper we show how this approach can benefit from feedback techniques and recent developments in well-posed systems theory, at the same time generalizing the previously known results. Among others, we show how well-posedness of degenerate parabolic equations can be proved.  相似文献   

17.
We show that, under certain smoothness conditions, a Brownian martingale, when evaluated at a fixed time, can be represented via an exponential formula at a later time. The time-dependent generator of this exponential operator only depends on the second order Malliavin derivative operator evaluated along a ‘frozen path’. The exponential operator can be expanded explicitly to a series representation, which resembles the Dyson series of quantum mechanics. Our continuous-time martingale representation result can be proven independently by two different methods. In the first method, one constructs a time-evolution equation, by passage to the limit of a special case of a backward Taylor expansion of an approximating discrete-time martingale. The exponential formula is a solution of the time-evolution equation, but we emphasize in our article that the time-evolution equation is a separate result of independent interest. In the second method, we use the property of denseness of exponential functions. We provide several applications of the exponential formula, and briefly highlight numerical applications of the backward Taylor expansion.  相似文献   

18.
We develop a space-time fractional Schrödinger equation containing Caputo fractional derivative and the quantum Riesz fractional operator from a space fractional Schrödinger equation in this paper. By use of the new equation we study the time evolution behaviors of the space-time fractional quantum system in the time-independent potential fields and two cases that the order of the time fractional derivative is between zero and one and between one and two are discussed respectively. The space-time fractional Schrödinger equation with time-independent potentials is divided into a space equation and a time one. A general solution, which is composed of oscillatory terms and decay ones, is obtained. We investigate the time limits of the total probability and the energy levels of particles when time goes to infinity and find that the limit values not only depend on the order of the time derivative, but also on the sign (positive or negative) of the eigenvalues of the space equation. We also find that the limit value of the total probability can be greater or less than one, which means the space-time fractional Schrödinger equation describes the quantum system where the probability is not conservative and particles may be extracted from or absorbed by the potentials. Additionally, the non-Markovian time evolution laws of the space-time fractional quantum system are discussed. The formula of the time evolution of the mechanical quantities is derived and we prove that there is no conservative quantities in the space-time fractional quantum system. We also get a Mittag-Leffler type of time evolution operator of wave functions and then establish a Heisenberg equation containing fractional operators.  相似文献   

19.
A time-dependent problem in a bounded domain for a fractional diffusion equation is considered. The first-order evolution equation involves a fractional-power second-order elliptic operator with Robin boundary conditions. A finite-element spatial approximation with an additive approximation of the operator of the problem is used. The time approximation is based on a vector scheme. The transition to a new time level is ensured by solving a sequence of standard elliptic boundary value problems. Numerical results obtained for a two-dimensional model problem are presented.  相似文献   

20.
There are several methods for solving operator equations in a Banach space. The successive approximation methods require the spectral radius of the iterative operator be less that 1 for convergence. In this paper, we try to use the incomplete semiiterative methods to solve a linear operator equation in Banach space. Usually the special semiiterative methods are convergent even when the spectral radius of the iterative operator of an operator of an operator equation is greater than 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号