首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the tight-binding random Hamiltonian on Z d , we consider the charge transport induced by an electric potential which varies sufficiently slowly in time, and prove that it is almost surely equal to zero at high disorder. In order to compute the charge transport, we adopt the adiabatic approximation and prove a weak form of adiabatic theorem while there is no spectral gap at the Fermi energy.  相似文献   

2.
3.
Within the scope of an anisotropic Bianchi type-V cosmological model we have studied the evolution of the universe. The assumption of a diagonal energy-momentum tensor leads to some severe restriction on the metric functions, which on its part imposes restriction on the components of the energy momentum tensor. This model allows anisotropic matter distribution. Further using the proportionality condition that relates the shear scalar (σ) in the model with the expansion scalar (?) and the variation law of Hubble parameter, connecting Hubble parameter with volume scale. Exact solution to the corresponding equations are obtained. The EoS parameter for dark energy as well as deceleration parameter is found to be the time varying functions. A qualitative picture of the evolution of the universe corresponding to different of its stages is given using the latest observational data.  相似文献   

4.
Within the scope of an anisotropic Bianchi type-VI cosmological model we have studied the evolution of the universe filled with perfect fluid and dark energy. To get the deterministic model of Universe, we assume that the shear scalar (σ) in the model is proportional to expansion scalar (?). This assumption allows only isotropic distribution of fluid. Exact solution to the corresponding equations are obtained. The EoS parameter for dark energy as well as deceleration parameter is found to be the time varying functions. Using the observational data qualitative picture of the evolution of the universe corresponding to different of its stages is given. The stability of the solutions obtained is also studied.  相似文献   

5.
6.
7.

According to the Dirac equation and the Rarita-Schwinger equation, the Hamilton-Jacobi equation in curved space-time for the spin 1/2 and 3/2 fermions have been derived. Therefore, we find the Hamilton-Jacobi equation is a fundamental equation in the semiclassical theory. By utilizing this Hamilton-Jacobi equation, we investigate the quantum tunneling radiation from slowly varying Reissner-Nordström (R-N) black hole. The results show that the Hawking temperature do not only related to the properties of slowly varying R-N black hole, but also depended on the time. Meanwhile, it finds that the Hamilton-Jacobi equation can help people more easily and effectively calculated thermodynamic properties black hole.

  相似文献   

8.
We consider multiscale Hamiltonian systems in which harmonic oscillators with several high frequencies are coupled to a slow system. It is shown that the oscillatory energy is nearly preserved over long times ${\varepsilon^{-N}}$ for arbitrary N > 1, where ${\varepsilon^{-1}}$ is the size of the smallest high frequency. The result is uniform in the frequencies and does not require non-resonance conditions.  相似文献   

9.
In this paper, we study a holographic dark energy model with time varying gravitational constant G as well as holographic parameter c 2 in flat FRW space-time geometry. We obtain the evolution of equation of state parameter and the exact differential equation, which determine the evolution of the dark energy density based on varying G and c 2 parameter. Also, we determine the deceleration parameter to explain the expansion of the universe. Further, we study the validity of the generalized second law of thermodynamics in this scenario. Finally, we find out a cosmological implication of our work by evaluating the holographic dark energy equation of state for low red-shifts containing both varying G and c 2 parameter corrections.  相似文献   

10.
We propose a new law for the deceleration parameter that varies linearly with time and covers Berman’s law where it is constant. Our law not only allows one to generalize many exact solutions that were obtained assuming constant deceleration parameter, but also gives a better fit with data (from SNIa, BAO and CMB), particularly concerning the late time behavior of the universe. According to our law only the spatially closed and flat universes are allowed; in both cases the cosmological fluid we obtain exhibits quintom like behavior and the universe ends with a big-rip. This is a result consistent with recent cosmological observations.  相似文献   

11.
We establish an abstract infinite dimensional KAM theorem dealing with unbounded perturbation vector-field, which could be applied to a large class of Hamiltonian PDEs containing the derivative ? x in the perturbation. Especially, in this range of application lie a class of derivative nonlinear Schrödinger equations with Dirichlet boundary conditions and perturbed Benjamin-Ono equation with periodic boundary conditions, so KAM tori and thus quasi-periodic solutions are obtained for them.  相似文献   

12.
Systems exhibiting hysteresis are considered in an extremely slowly fluctuating environment. The parameter causing the hysteresis is assumed to be a Markovian diffusion process elapsing much more slowly than the internal dynamics. The infinitesimal generator for the resulting Markov process including the hysteresis jumps is derived and explicit expressions for the probability densities are given. A numerical example shows the change from monomodal to bimodal behaviour of the stationary distribution if the variance of the external noise increases representing a new kind of noise-induced transition.  相似文献   

13.
We consider a finite region of a lattice of weakly interacting geodesic flows on manifolds of negative curvature and we show that, when rescaling the interactions and the time appropriately, the energies of the flows evolve according to a nonlinear diffusion equation. This is a first step toward the derivation of macroscopic equations from a Hamiltonian microscopic dynamics in the case of weakly coupled systems.  相似文献   

14.
Invariant Tori in Hamiltonian Systems with Impacts   总被引:2,自引:0,他引:2  
It is shown that a large class of solutions in two-degree-of-freedom Hamiltonian systems of billiard type can be described by slowly varying one-degree-of-freedom Hamiltonian systems. Under some non-degeneracy conditions such systems are found to possess a large set of quasiperiodic solutions filling out two dimensional tori, which correspond to caustics in the classical billiard. This provides a unified proof of existence of quasiperiodic solutions in convex billiards and other systems with impacts including classical billiard in electric and magnetic fields, dual billiard, and Fermi–Ulam systems. Received: 8 September 1999 / Accepted: 16 November 1999  相似文献   

15.
16.
Based on the invariant eigen-operator method (lEO) [Phys. Left. A 321 (2004) 75] we derive the exact energy gap for some Hamiltonians, which describe some polariton systems. The result shows that in some cases the IEO method, stemming from the Heisenberg approach, is more direct and convenient for deriving the energy-level gap formula than via the approach of solving the Schrodinger equation.  相似文献   

17.
Based on the invariant eigen-operator method (IEO) [Phys. Lett. A 321 (2004) 75] we derive the exact energy gap for some Hamiltonians, which describe some polariton systems. The result shows that in some cases the IEO method, stemming from the Heisenberg approach, is more direct and convenient for deriving the energy-level gap formula than via the approach of solving the Schr(o)dinger equation.  相似文献   

18.
Fluorescence correlation spectroscopy (FCS) is a powerful tool to quantitatively study the diffusion of fluorescently labeled molecules. It allows in principle important questions of macromolecular transport and supramolecular aggregation in living cells to be addressed. However, the crowded environment inside the cells slows diffusion and limits the reservoir of labeled molecules, causing artifacts that arise especially from photobleaching and limit the utility of FCS in these applications. We present a method to compute the time correlation function from weighted photon arrival times, which compensates computationally during the data analysis for the effect of photobleaching. We demonstrate the performance of this method using numerical simulations and experimental data from model solutions. Using this technique, we obtain correlation functions in which the effect of photobleaching has been removed and in turn recover quantitatively accurate mean-square displacements of the fluorophores, especially when deviations from an ideal Gaussian excitation volume are accounted for by using a reference calibration correlation function. This allows quantitative FCS studies of transport processes in challenging environments with substantial photobleaching like in living cells in the future.  相似文献   

19.
We propose a new law for the deceleration parameter that varies periodically with time. According to the law we give a model of the oscillating universe with quintom matter in the framework of a 4-dimensional Friedmann Ftobertson Walker background. We find that, in the model, the Hubble parameter oscillates and keeps positive The universe undergoes decelerating expansion and accelerating expansion alternately without singularity.  相似文献   

20.
The set of stationary measures of an infinite Hamiltonian system with noise is investigated. The model consists of particles moving in with bounded velocities and subject to a noise that does not violate the classical laws of conservation, see [OVY]. Following [LO] we assume that the noise has also a finite radius of interaction, and prove that translation invariant stationary states of finite specific entropy are reversible with respect to the stochastic component of the evolution. Therefore the results of [LO] imply that such invariant measures are superpositions of Gibbs states. Received: 26 September 1996 / Accepted: 3 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号