首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triboelectric particle charging features in many industrial processes. Dynamic particle-surface contact is the key charging mechanism in many types of particle tribocharger. Models of dynamic charging have tended to assume that the particle is spherical, but experiments have shown that particle shape can strongly influence the charging behaviour. We review some experimental work, then present a simple two-dimensional model of the dynamic contact charging of an elliptical particle, of varying roundness ratio, with a flat surface. A rich variety of contact modes (sliding, rolling, tumbling) are captured, each producing distinctive charging behaviour.  相似文献   

2.
We investigate the dynamics of microcapsules in linear shear flow within a reduced model with two degrees of freedom. In previous work for steady shear flow, the dynamic phases of this model, i.e. swinging, tumbling and intermittent behaviour, have been identified using numerical methods. In this paper, we integrate the equations of motion in the quasi-spherical limit analytically for time-constant and time-dependent shear flow using matched asymptotic expansions. Using this method, we find analytical expressions for the mean tumbling rate in general time-dependent shear flow. The capsule dynamics is studied in more detail when the inverse shear rate is harmonically modulated around a constant mean value for which a dynamic phase diagram is constructed. By a judicious choice of both modulation frequency and phase, tumbling motion can be induced even if the mean shear rate corresponds to the swinging regime. We derive expressions for the amplitude and width of the resonance peaks as a function of the modulation frequency.  相似文献   

3.
The dynamics of fluid vesicles in simple shear flow is studied using mesoscale simulations of dynamically triangulated surfaces, as well as a theoretical approach based on two variables: a shape parameter and the inclination angle, which has no adjustable parameters. We show that, between the well-known tank-treading and tumbling states, a new "swinging" state can appear. We predict the dynamic phase diagram as a function of the shear rate, the viscosities of the membrane and the internal fluid, and the reduced vesicle volume. Our results agree well with recent experiments.  相似文献   

4.
The dynamics of vesicles under a shear flow are analyzed analytically in the small deformation regime. We derive two coupled nonlinear equations which describe the vesicle orientation in the flow and its shape evolution. A new type of motion is found, namely, a "vacillating-breathing" mode: the vesicle orientation undergoes an oscillation around the flow direction, while the shape executes breathing dynamics. This solution coexists with tumbling. Moreover, we provide an explicit expression for the tumbling threshold. A rheological law for a dilute vesicle suspension is outlined.  相似文献   

5.
A new approach to visualizing spectral densities and analyzing NMR relaxation data has been developed. By plotting the spectral density function, J(omega), as F(omega)=2 omega J(omega) on the log-log scale, the distribution of motional correlation times can be easily visualized. F(omega) is calculated from experimental data using a multi-Lorentzian expansion that is insensitive to the number of Lorentzians used and allows contributions from overall tumbling and internal motions to be separated without explicitly determining values for correlation times and their weighting coefficients. To demonstrate the approach, (15)N and (13)C NMR relaxation data have been analyzed for backbone NH and C(alpha)H groups in an alpha-helix-forming peptide 17mer and in a well-folded 138-residue protein, and the functions F(omega) have been calculated and deconvoluted for contributions from overall tumbling and internal motions. Overall tumbling correlation time distribution maxima yield essentially the same overall correlation times obtained using the Lipari-Szabo model and other standard NMR relaxation data analyses. Internal motional correlational times for NH and C(alpha)H bond motions fall in the range from 100 ps to about 1 ns. Slower overall molecular tumbling leads to better separation of internal motional correlation time distributions from those of overall tumbling. The usefulness of the approach rests in its ability to visualize spectral densities and to define and separate frequency distributions for molecular motions.  相似文献   

6.
7.
以梅山钢铁股份有限公司热轧机组的粗轧板坯边部出现“黑线”为背景,对孔型立辊的5道次可逆立-平轧制过程进行了数值模拟.模拟结果表明:孔型立辊轧制能更有效地纠正双鼓变形,避免产生边部夹层;轧件的边角部金属在轧制过程中逐渐流动到轧件的上下表面;在相同轧制工艺条件下,随着孔型内倒角半径的增加翻平量逐渐增大;轧制过程中,低温、高应力应变状态的金属在轧件边部的累积最终可能导致轧件边部沿长度方向产生“黑线”缺陷;合理地设计立辊的形状和优化立轧压下制度可以避免边部夹层的产生,并减少“黑线”缺陷甚至消除该缺陷. 关键词: 热连轧 数值模拟 “黑线”缺陷  相似文献   

8.
Surfactant multilamellar vesicles (SMLVs) play a key role in the formulation of many industrial products, such as detergents, foodstuff, and cosmetics. In this Letter, we present the first quantitative investigation of the flow behavior of single SMLVs in a shearing parallel plate apparatus. We found that SMLVs are deformed and oriented by the action of shear flow while keeping constant volume and exhibit complex dynamic modes (i.e., tumbling, breathing, and tank treading). This behavior can be explained in terms of an excess area (as compared to a sphere of the same volume) and of microstructural defects, which were observed by 3D shape reconstruction through confocal microscopy. Furthermore, the deformation and orientation of SMLVs scale with radius R in analogy with emulsion droplets and elastic capsules (instead of R(3), such as in unilamellar vesicles). A possible application of the physical insight provided by this Letter is in the rationale design of processing methods of surfactant-based systems.  相似文献   

9.
The viscosity-dependent retarding effect of a polymeric solvent on the rotation of small solute molecules is investigated by13C NMR relaxation measurements. It is found that the relaxation data of 1,3-dibromoadamantane in highly viscous polymeric chlorotrifluoroethene can be explained neither by isotropic nor by realistic anisotropic tumbling in a single environment. The experimental data are rationalized in terms of fast exchange between at least two environments with correlation times differing by up to two orders of magnitude. The study shows that a uniform retardation of molecular tumbling by a polymeric solvent, desirable for shifting the NMR observation window in studies of intramolecular mobility, is not always feasible.  相似文献   

10.
We reveal that under moderate shear stress (etagamma[over ] approximately 0.1 Pa) red blood cells present an oscillation of their inclination (swinging) superimposed to the long-observed steady tank treading (TT) motion. A model based on a fluid ellipsoid surrounded by a viscoelastic membrane initially unstrained (shape memory) predicts all observed features of the motion: an increase of both swinging amplitude and period (1/2 the TT period) upon decreasing etagamma[over ], a etagamma[over ]-triggered transition toward a narrow etagamma[over ] range intermittent regime of successive swinging and tumbling, and a pure tumbling at low etagamma[over ] values.  相似文献   

11.
The photochemical reactions of methylene blue (MB) included in water-soluble sulfonated calix[n]arenes (n = 4, 6, 8) are studied using a time-resolved electron spin resonance method. The chemically induced dynamic electron polarization (CIDEP) spectra show the formation of the complex radical pair composed of the MB monocation radical and calixarene (phenoxyl-type) radical. The lifetime and broadened spectral shape are dependent on the size of the calixarene and are due to the longitudinal and transverse relaxation mainly induced by the tumbling motion of the radical pair with the spin dipole–dipole interaction. The pair dissociates in a few hundreds of nanoseconds in cases of n = 6 and 8.  相似文献   

12.
13.
We describe simulations of an elastic filament immersed in a fluid and subjected to a body force. The coupling between the fluid flow and the friction that the filament experiences induces bending and alignment perpendicular to the force. With increasing force there are four shape regimes, ranging from slight distortion to an unsteady tumbling motion. We also find marginally stable structures. The instability of these shapes and the alignment are explained by induced bending and nonlocal hydrodynamic interactions. These effects are experimentally relevant for stiff microfilaments.  相似文献   

14.
Process intensification has the potential to change the state of the chemical and process industries. The polymer film compact heat exchanger (PFCHE) is a new type of intensified heat exchanger. The potential market is seen as being large [1] but as yet the unit has not been adopted by industry. The advantageous heat transfer characteristics of such a unit have been shown in previous work [2]. This work investigates the dynamic behaviour of the PFCHE and the process control problems that may arise.The PFCHE available at Newcastle University has been used to generate dynamic temperature data. The data have been employed to formulate and validate time series type models. These models were then used in simulated process control studies. The dynamic behaviour of the unit appeared to be linear and response times were quick. It was found that the responses of the model to disturbances in inlet temperatures could be controlled well using a digital form of PI control. There were, however, doubts as to the ability of the model to completely replicate the system.  相似文献   

15.
In this paper, an experimental and numerical investigation of premixed methane/air flame dynamics in a closed combustion vessel with a thin obstacle is described. In the experiment, high-speed video photography and a pressure transducer are used to study the flame shape changes and pressure dynamics. In the numerical simulation, four sub-grid scale viscosity models and three sub-grid scale combustion models are evaluated for their individual prediction compared with the experimental data. High-speed photographs show that the flame propagation process can be divided into five stages: spherical flame, finger-shaped flame, jet flame, mushroom-shaped flame and bidirectional propagation flame. Compared with the other sub-grid scale viscosity models and sub-grid scale combustion models, the dynamic Smagorinsky–Lilly model and the power-law flame wrinkling model are better able to predict the flame behaviour, respectively. Thus, coupling the dynamic Smagorinsky–Lilly model and the power-law flame wrinkling model, the numerical results demonstrate that flame shape change is a purely hydrodynamic phenomenon, and the mushroom-shaped flame and bidirectional propagation flame are the result of flame–vortex interaction. In addition, the transition from “corrugated flamelets” to “thin reaction zones” is observed in the simulation.  相似文献   

16.
The dynamic dielectric properties of the title solutions have been measured between 20 MHz and 36 GHz at 20 °C. In addition to spectral components due to the relaxation of solute and solvent as found in similar manner for other binary polar-polar systems, a low frequency feature is observed which is weak for benzophenone but intense for both the derivatives. It can be ascribed to solvent molecules forming a loose salvation shell, where their tumbling motion is slowed down.  相似文献   

17.
Brownian dynamics simulation software has been developed to study the dynamics of proteins as a whole in solution. The proteins were modelled as spheres with point dipoles embedded in the centre of sphere. A set of Brownian dynamics simulations at different values of the dipole moments, protein concentration and translational diffusion coefficient was performed to investigate the influence of interprotein electrostatic interactions on dynamic protein behaviour in solution. It was shown that these interactions led to the slowing down of protein rotation and a complex non-exponential shape of the rotational correlation function. Analysis of the correlation functions was performed within the frame of the model of electrostatic interprotein interactions advanced earlier on the basis of NMR and dielectric spectroscopy data. This model assumes that, due to electrostatic interactions, protein Brownian rotation becomes anisotropic. The lifetime of this anisotropy is controlled mainly by translational diffusion of proteins. Thus, the correlation function can be decomposed into two components corresponding to anisotropic Brownian rotation and an isotropic motion of an external electric field vector produced by the surrounding proteins.  相似文献   

18.
Fe-C合金中形变诱导动态相变的蒙特卡罗模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
肖纳敏  李殿中  李依依 《物理学报》2009,58(13):169-S176
采用蒙特卡罗(MC)方法模拟了Fe-C合金在奥氏体-铁素体相变的平衡温度之上的形变诱导动态相变过程.通过建立合适的MC规则,在一个MC模型中同时实现了奥氏体-铁素体相变、铁素体-奥氏体逆相变以及奥氏体动态再结晶过程的模拟.同时,一个基于矢量变换的拓扑模型被嵌入此MC相变模型,用来跟踪由于塑性变形导致的晶粒形貌变化.在此基础上模拟分析了动态相变过程中铁素体的形成特点,讨论了由于相变、逆相变和动态再结晶交互作用所带来的影响. 关键词: 形变诱导动态相变 蒙特卡罗模型 动态再结晶 介观模拟  相似文献   

19.
Tank-treading, tumbling, and trembling are different types of the vesicle behavior in an external flow. We derive a dynamical equation enabling us to establish a state of nearly spherical vesicles. For a 2D external flow, the character of the vesicle dynamics is determined by two dimensionless parameters, depending on the vesicle excess area, fluid viscosities, membrane viscosity and bending modulus, strength of the flow, and ratio of the elongational and rotational components of the flow. The tank-treading to tumbling transition occurs via a saddle-node bifurcation, whereas the tank-treading to trembling transition occurs via a Hopf bifurcation. A slowdown of vesicle dynamics should be observed in a vicinity of a point separating the transition lines. We show that the slowdown can be described by a power law with two different critical exponents 1/4 and 1/2 corresponding to the slowdown of tumbling and trembling cycles.  相似文献   

20.
The aspects related to modelling the frequency dependence of the elastic properties of air-saturated porous materials have been largely neglected in the past for several reasons. For acoustic excitation of porous materials, the material behaviour can be quite well represented by models where the properties of the solid frame have little influence. Only recently has the importance of the dynamic moduli of the frame come into focus. This is related to a growing interest in the material behaviour due to structural excitation. Two aspects stand out in connection with the elastic-dynamic behaviour. The first is related to methods for the characterisation of the dynamic moduli of porous materials. The second is a perceived lack of numerical methods able to model the complex material behaviour under structural excitation, in particular at higher frequencies. In the current paper, experimental data from a panel under structural excitation, coated with a porous material, are presented. In an attempt to correlate the experimental data to numerical predictions, it is found that the measured quasi-static material parameters do not suffice for an accurate prediction of the measured results. The elastic material parameters are then estimated by correlating the numerical prediction to the experimental data, following the physical behaviour predicted by the augmented Hooke?s law. The change in material behaviour due to the frequency-dependent properties is illustrated in terms of the propagation of the slow wave and the shear wave in the porous material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号