首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CuClS0.94Te1.06 and CuBrS0.92Te1.08, Two New Copper(I) Chalcogen Halides Containing Neutral [STe] Screws CuClS0.94Te1.06 and CuBrS0.92Te1.08 are two new, isotypic compounds of general composition CuXYY′ (X = halide, Y, Y′ = chalcogen) with a mixed chalcogen substructure. They crystallize in the monoclinic system, space group P21/n (No. 14), a = 7.878(2), b = 4.727(1), c = 10.759(2) Å, β = 103.97(2)°, V = 388.8(2) Å3 (CuClS0.94Te1.06) and a = 8.043(3), b = 4.746(2), c = 11.240(4) Å, β = 103.46(3)°, V = 417.3(3) Å3 (CuBrS0.92Te1.08), both with Z = 4. The crystal structures are dominated by ordered [STe±0]-screws. From a crystal chemical point of view the sulfur and tellurium atoms are significantly different. The melting points are 341 °C (CuClS0.94Te1.06) and 336 °C (CuBrS0.92Te1.08). The compounds CuXYY′ (X = Cl, Br, I; Y, Y′ = S, Se, Te) are compared and discussed.  相似文献   

2.
Crystals of the title compound were obtained by annealing a powder of Tl2Te3 in a vertical temperature gradient (230 °C–240 °C, 4 weeks). Tl2Te3 crystallizes in space group C2/c with lattice parameters of a = 13.275(1) Å, b = 6.562(1) Å, c = 7.918(1) Å, and β = 107.14°(2). The tellurium atoms form chains [Te32–], consisting of interconnected linear triatomic · Te–^Te–Te · groups which are isosteric with XeF2. The Te–Te distances of the XeF2-like units are 3.02 Å, the connecting ones 2.83 Å.  相似文献   

3.
A Contribution on the Crystal Structure of CuYW2O8, CuHoW2O8, and CuYW2O8 Single crystals of (I) CuY2O8, (II), CuHoW2O8, and (III) CuYbW2O8 were prepared and investigated by X-ray technique. (I) crystallizes with triclinic symmetry, space group C? P1 (a = 5.939 Å, b = 6.042 Å, c = 5.025 Å; α = 112.30°, β = 111.77°; Z = 1). (II) and (III) belong to monoclinic symmetry, space group C? P2/n (II) (a = 10.045 Å, b = 5.808 Å, c = 5.021 Å; β = 94.38°; z = 2 (III) a = 9.948 Å, b = 5.824 Å, c = 5.008 Å; β = 93.36°; Z = 2). The crystal structures will be discussed with respect to other to copper rare earth tungstates.  相似文献   

4.
The Crystal Chemistry of Copper Rare-Earth Oxotungstates: (I): triclinic-α-CuTbW2O8, (II): monoclinic-CuInW2O8 and (III): monoclinic-CuYW2O8 Single crystals of (I), (II) and (III) were prepared by recrystallisation in closed systems and examined by X-ray technique. (I): space group C? P1 , a = 7.3080, b = 7.8945, c = 7.1476 Å, α = 115.23, β = 116.21, γ = 56.98°, Z = 2; (II): space group C? C2/c, a = 9.6576, b = 11.6496, c = 4.9863 Å, β = 91.17°, Z = 4; (III): space group C? P2/n, a = 10.0504, b = 5.8214, c = 5.0224 Å, β = 94.23°, Z = 2. The crystal structures are discussed with respect to calculations of the coulombterms of lattice energy and possible valence states of Cu2+ and Mo5+.  相似文献   

5.
Pb8FeIIFeF24 is triclinic: a = 20.118(3) Å, b = 5.597(1) Å, c = 9.440(2) Å, α = 89.75(2)°, β = 105.79(2)°, α = 89.38(2)°, Z = 2. The structure is solved in the unconventional space group C1 , from X-ray single crystal data using 1 641 independent reflections (R = 0.048, Rw = 0.051). It is built up from the stacking of two subnetworks along the a axis: fluorite-like [Pb8F10]n6n+ layers and infinite dimetallic [FeIIFeF14]n6n? double-chains of corner-sharing octahedra running along the b axis.  相似文献   

6.
Synthesis, Crystal Structures, and Vibrational Spectra of [(Mo6X)Y]2–; Xi = Cl, Br; Ya = NO3, NO2 By treatment of [(Mo6X)Y]2–; Xi = Ya = Cl, Br with AgNO3 or AgNO2 by strictly exclusion of oxygene in acetone the hexanitrato and hexanitrito cluster anions [(Mo6X)Y]2–, Ya = NO2, NO3 are formed. X-ray structure determinations of (Ph4As)2[(Mo6Cl)(NO3)] · 2 Me2CO ( 1 ) (monoclinic, space group P21/n, a = 12.696(3), b = 21.526(1), c = 14.275(5) Å, β = 115.02(2)°, Z = 2), (n-Bu4N)2[(Mo6Br)(NO3)] · 2 CH2Cl2 ( 2 ) (monoclinic, space group P21/n, a = 14.390(5), b = 11.216(5), c = 21.179(5)Å, β = 96.475(5)°, Z = 2) and (Ph4P)2[(Mo6Cl)(NO2)] (3) (monoclinic, space group P21/n, a = 11.823(5), b = 13.415(5), c = 19.286(5) Å, β = 105.090(5)°, Z = 2) reveal the coordination of the ligands via O atoms with (Mo–O) bond lengths of 2.11–2.13 Å, and (MoON) angles of 122–131°. The vibrational spectra of the nitrato compounds show the typical innerligand vibrations νas(NO2) (∼ 1500), νs(NO2) (∼ 1270) and ν(NO) (∼ 980 cm–1). The stretching vibrations ν(N=O) at 1460–1490 cm–1 and ν(N–O) in the range of 950–1000 cm–1 are characteristic for nitrito ligands coordinated via O atoms.  相似文献   

7.
CuClSe1.53Te0.47 and CuClSe0.56Te1.44 are obtained from the reaction of CuCl, Se, and Te in stoichiometric amounts. Both copper(I) selenium tellurium chlorides are monoclinic, space group P21/n (no. 14) with lattice constants of a = 7.837(1) Å, b = 4.699(1) Å, c = 10.762(2) Å, β = 104.37(2)°, V = 383.9(1) Å3 (CuClSe1.53Te0.47), and a = 8.074(1) Å, b = 4.830(1) Å, c = 10.973(1) Å, β = 103.87(2)°, V = 415.5(1) Å3 (CuClSe0.56Te1.44), and Z = 4. A common feature of these isostructural compounds are heteroatomic strands [YY'] (Y, Y' = chalcogen). These strands are running along [010] and are connected to layers by chains [CuCl]. Vibrational spectra of CuClSe1.53Te0.47, CuClSe0.56Te1.44, CuXTe2 and CuX'Se2 (X = Cl, Br, I; X' = Cl, Br) are analysed with respect to the bonding relations of the chalcogen chains. Modes derived from IR and Raman spectra are assigned by correlation with tri gonal Se and related copper(I) chalcogen halides. Both, X‐ray structural data and an analysis of the chalcogen vibrational modes in IR and Raman spectra, lead to a detailed insight into the ordering phenomena of the chalcogen chains in this type of copper(I) chalcogen halides.  相似文献   

8.
The blue mixed-crystal title compound Na15[MoMoO462H14 (H2O)70]0.5[MoMoO457H14 · (H2O)68]0.5 · ca. 400 H2O ≡ Na15[ 1 a ]0.5[ 1 b ]0.5 · ca. 400 H2O 1 , which crystallizes in the triclinic space group P 1 (a = 30.785(2), b = 32.958(2), c = 47.318(3) Å, α = 90.53(1), β = 89.86(1), γ = 96.85(1)°, V = 47665(6) Å3, Z = 2, Dcalc = 2.149 g cm–3), precipitates within one day when an acidic (pH ≈ 1) aqueous solution of sodium molybdate (because of the extremely high solubility of the reaction product used in relatively high concentration) is reduced by sodium dithionite. 1 contains hitherto unknown pure molybdenum-oxide based, nanosized, ring-shaped, crystallographically independent cluster anions of the type {Mo154} 1 a and {Mo152} 1 b , the lacunary-type analogue of 1 a . Using the same reducing agent but in the presence of a reagent with a high affinity to the specific {Mo2}-type building unit (also a leaving group) of 1 a , such as formic acid, the compound Na22[MoMoO442H14(H2O)58] · ca. 250 H2O 2 (space group P 1, a = 24.724(1), b = 35.726(2), c = 44.608(3) Å, α = 93.25(1), β = 93.51(1), γ = 106.72(1)°, V = 37552(4) Å3, Z = 2, Dcalc = 2.401 g cm–3) is obtained in which the giant rings, having four missing {Mo2} units compared to 1 a , are linked to chains. Until now, similar chain-type compounds could only be obtained using a non-well-defined synthetic method.  相似文献   

9.
Single Crystal Electron Paramagnetic Resonance Study on the System Fe(NO)(Et2dsc)2/In(Et2dsc)3 (Et2dsc = diethyldiselenocarbamate). Crystal and Molecular Structure of Tris(diethyldiselenocarbamato)indium(III), InIII(Et2dsc)3 A single-crystal EPR study (T = 295 K) of Bis(diethyldiselenocarbamato)nitrosyliron(I) incorporated in Tris(diethyldiselenocarbamato)indium(III) is reported. The tensors g an AN have rhombic symmetry with g1 = 2.048, g2 = 2.058, g3 = 2.062 and A = 9.2 · 10?4 cm?1, A = 10.0 · 10?4 cm?1, A = 11.3 · 10?4 cm?1. The A values are discussed in terms of spin density distribution. The x-ray crystallographic data of InIII(Et2dsc)3 (space group P21/c, a = 6.731(3) Å, b = 18.05(9) Å, c = 20.914(10) Å, α = 90.02(2)°, β = 93.74(2)° and γ = 90.01(2)°) are given.  相似文献   

10.
Reaction of Cyclopentadienyl Substituted Molybdenum(V) Tetrachlorides with LiPH(2,4,6-Bu C6H2) and KPPh2(Dioxane)2. Crystal Structures of [Cp0Mo(μ? Cl)2]2 and [Cp Mo2(μ? Cl)3(μ? PPh2)] (Cp0 = C5Me4Et) The reaction of [Cp0Mo(CO)3]2 (Cp0 = C5Me4Et) and [Cp′Mo(CO)3]2 (Cp′ = C5H4Me) with PCl5 in CH3CN furnishes the Mo(V) complexes Cp0MoCl4(CH3CN) 1 and Cp′MoCl4(CH3CN) 2 in good yields. While 1 and 2 are reduced by LiPH(2,4,6-BuC6H2) to the Mo(III) complexes [Cp0Mo(μ? Cl)2]2 3 and [Cp′Mo(μ? Cl)2]2 4 , the reaction of 1 with KPPh2(dioxane)2 yields the reduction/substitution product [CpMo2(μ? Cl)3(μ? PPh)] 5 in low yield. 1 – 4 were characterized spectroscopically (i.r., mass, 3 and 4 also n.m.r.). An X-ray crystal structure determination was carried out on 3 and 5. 3 crystallizes in the triclinic space group P1 (No. 2) with a = 8.278(4), b = 12.508(7), c = 12.826(7) Å, α = 86.78(5), β = 81.55(2), γ = 75.65(4)°, V = 1 272.4 Å3 and two formula units in the unit cell (data collection at ? 67°C, 4 255 independent observed reflections, R = 2.9%); 5 crystallizes in the triclinic space group P1 (No. 2) with a = 11.536(8), b = 12.307(9), c = 13.157(9) Å, α = 91.41(6), β = 100.42(5), γ = 112.26(6)°, V = 1 688.7 Å3 and two formula units in the unit cell (data collection at ? 60°C, 6 147 independent observed reflections, R = 4.9%). The crystal structure of 3 shows the presence of centrosymmetric dimeric molecules with four bridging chloro ligands. In 5, two Mo atoms are bridged by three chloro ligands and one PPh2 ligand. The Mo? Mo bond length in 3 and 5 (2.600(2), 2.596(2) Å and 2.6388(8) Å) is in agreement with a Mo? Mo bond.  相似文献   

11.
Pb7FeIIFeF34 is monoclinic: a = 16.375(2) Å, b = 11.233(2) Å, c = 7.615(1) Å, β = 102.67(1)º, Z = 2. The crystal structure was solved in the space group C2/m (nº 12), from X-ray single crystal data using 957 independent reflections (705 with F/σ(F) > 4, leading to R = 0.038). It consists in infinite helicoidal [FeIIFeF34]n14n? double-chains of cornersharing octahedra running along the b-axis and separated from each other by lead ions.  相似文献   

12.
Synthesis, Crystal Structures, and Vibrational Spectra of [OsBr(acac)(PPh3)] and [OsBr(acac)(AsPh3)] By reaction of tetrabromoacetylacetonatoosmate(IV) with PPh3 or AsPh3 in ethanol the complexes [OsBr(acac)(PPh3)] ( 1 ) and [OsBr(acac)(AsPh3)] ( 2 ) are formed, which are purified by chromatography on silica gel. X-ray structure determinations of single crystals of ( 1 ) (monoclinic, space group P 21/n, a = 13.035(2), b = 18.2640(14), c = 16.636(3) Å, β = 112.776(14)°, Z = 4) and ( 2 ) (monoclinic, space group P 21/c, a = 13.23(5), b = 18.35(2), c = 16.65(2) Å, β = 112.9(5)°, Z = 4) result in mean bond distances Os–P = 2.413, Os–As = 2.483, Os–Br = 2.488 and Os–O = 2.037 Å. The vibrational spectra (10 K) exhibit the inner ligand vibrations of the acac, PPh3 and AsPh3 groups with nearly constant frequencies and the stretching vibrations of OsP at 499–522, of OsAs at 330–339, of OsBr at 213–214 and of OsO in the range 460–694 cm–1.  相似文献   

13.
The Crystal Structure of NH4VO2F2 Crystals of NH4VO2F2 are monoclinic, space group Pc, a = 4.814(2), b = 11.434(3), c = 7.214(2) Å, β = 108.84(4)°. Z = 4. The VO2F-ion is polymeric. The structure consists of endless chains of strongly distorted octahedra with common edges. Two adjacent polyhedra are linked by an asymmetrical oxygen bridge (bond lengths 1.74 and 2.21 Å) and an asymmetrical fluorine bridge (bond lengths 1.97 und 2.21 Å). The terminal V? O- and V? F-distances are 1.55 and 1.86 Å, respectively.  相似文献   

14.
Tetraammine Lithium Cations Stabilizing Phenylsubstituted Zintl-Anions: The Compound [Li(NH3)4]2[Sn2Ph4] Ruby-red, brittle single crystals of [Li(NH3)4]2[Sn2Ph4] were synthesized by the reaction of diphenyltin dichloride and metallic lithium in liquid ammonia at ?35°C. The structure was determined from X-ray singlecrystal diffractometer data: Space group, P1 , Z = 1, a = 9.462(2) Å, b = 9.727(2) Å, c = 11.232(2) Å, α = 66.22(3)°, β = 85.78(3)°, γ = 61.83(3)°, R1 (F ? 4σF) = 5.13%, wR2 (F02 ? 4σF) = 10.5%, N(F ? 4σF) = 779, N(Var.) = 163. The compound contains to Sb2Ph4 isosteric centres [Sn2Ph4]2? as anions which are connected to rods by lithium cations in distorted tetrahedral coordination by ammonia. These rods are arranged parallel to one another in the b,c-plane, but stacked along [100].  相似文献   

15.
To the Knowledge of the NaCl Family of Structure: The Crystal Structure of NaMnO2 Ochre coloured single crystals of NaMnO2 show a monoclinic [a = 5.662 Å, b = 2.860 Å, c = 5.799 Å, β = 113.1°] variant [C–C2/m; Na in 2(d), Mn in 2(a), O in 4(i), R = 11.2% (MoKα)] of the α-NaFeO2-type of structure. The Jahn-Teller-distortion within the {MnO6}-Group ist remarkable with Mn ? O = 1.93 (4×), 2.40 (2 ×) Å. NaMnO2 posesses temperature indepent paramagnetism: +Mol =+3450 · 10?6 cgs. The Madelung Part of Lattice Energy is calculated and discussed.  相似文献   

16.
Reactions in the CsCl? TiCl3? Ti system afford CsTiCl3 (CsNiCl3 type, a = 7.3086(7) Å, c = 6.0670(8) Å) and the new phase CsTi2Cl7, the structure of which was determined by single crystal X-ray diffraction means (P2/c, Z = 2, a = 7.0076(4) Å, b = 6.2256(4) Å, c = 12.000(2) Å, β = 92.175(6)°, R/Rw = 0.026/0.035 for 1403 reflections, 2Θ ≤ 60°, MoKα). The structure can be generated by condensation of TiCl6 groups first through cis edges to form TiCl2Cl4/2 ribbons and then by interconnection of these with one chlorine per titanium to give layers, viz., [Ti(Cl)Cl4/2Cl1/2]?. The remaining, singly bonded chlorine projects into the interlayer region and has a Ti? Cl distance 0.208 Å less than the average for the five, 2.466 Å, reflecting significant pi bonding of the chlorine to titanium. Possible interaction of the d orbitals on adjacent titanium(III) atoms is also considered.  相似文献   

17.
The crystal structure of NaBiO2 NaBiO2 crystallizes monoclinic in C with a = 7.394, b = 7.262, c = 5.886 Å, β = 127.7°; Z = 4. Parameters were refined by least-squares (555 hkl with |h?l| = 0 to 4; R = 10.9%). Angular groups [BiO2] are twisted by 180°, forming chains [BiO2/2O2/2] along [001]. The MADELUNG part of lattice energy (MAPLE) is calculated and discussed.  相似文献   

18.
Synthesis, Crystal Structures, and Vibrational Spectra of [OsCl(acac)(EPh3)], E = P, As, Sb By reaction of tetrachloroacetylacetonatoosmate(IV) with PPh3, AsPh3 or SbPh3 in ethanol the complexes [OsCl(acac)(EPh3)], E = P, As, Sb are formed, which are purified by chromatography on silica gel. X-ray crystal structure determinations of the isotypic single crystals of [OsCl(acac)(EPh3)] (monoclinic, space group P 21/c, Z = 4; E = P ( 1 ): a = 12.972(2), b = 18.255(2), c = 16.517(2) Å, β = 112.61(2)°; E = As ( 2 ): a = 13.173(5), b = 18.299(5), c = 16.429(5) Å, β = 112.346(5)°; E = Sb ( 3 ): a = 13.573(3), b = 18.520(3), c = 16.440(9) Å, β = 111.78(2)°) result in mean bond distances Os–P = 2.412, Os–As = 2.485, Os–Sb = 2.619, Os–Cl = 2.354 and Os–O = 2.032 Å. The IR spectra (10 K) exhibit the inner ligand vibrations of the acac and EPh3 groups with nearly constant frequencies and the stretching vibrations of OsP at 500–524, of OsAs at 330–339, of OsSb at 271–278, of OsCl at 317–322 and of Os–O in the range 460–694 cm–1.  相似文献   

19.
The structure of (S4N3)2SbCI5 has been determined by X-ray methods using least-squares′ refinement. The compound crystallises monoclinic; C–P21/c, a = 9.24 Å, b = 17.77 Å, c = 11.29 Å, β = 110.06°, Z = 4. The antimony atom has a fivefold coordination the geometry being derived from a deformed octahedron, the S4N-rings retained their planar shape.  相似文献   

20.
Synthesis and Crystal-Structure of Na2Mn3O7 Single crystals of Na2Mn3O7 have been grown hydrothermally applying high oxygen pressure (p = 2 kbar). The new compound cystallizes triclinic; space group P1 ; a = 6.636(6) Å, b = 6.854(6) Å, c = 7.548(6) Å, α = 105.76(6)°, β = 106.86(6)°, γ = 111.60(6)°; Z = 2. The crystal structure has been solved and refined to R = 7.9% and Rw = 6.2% (diffractometer data, 1044 independent reflexions). The crystal structure consists of Mn3O72? anions with manganese coordinated octahedrally by oxygen. These layered anions are hold together by Na+ ions (coordination numbers 5 and 6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号