首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Abstract

The reactions of either PhPCl2 or PCl3 with (Me3Si)2NLi followed by H2C[dbnd]CHMgBr were used to prepare the new P-vinyl substituted [bis(trimethylsilyl)amino]phosphines, (Me3Si)2NP(R)CH[dbnd]CH2 [1: R=Ph, 2: CH[dbnd]CH2, 3: R=Me, and 4: R=N(SiMe3)2]. Oxidative bromination of phosphines 3–1 afforded the P-bromo-P-vinyl-N-(trimethylsilyl)phosphoranimines, Me3SiN[dbnd]P(CH[dbnd]CH2)(R)Br [5: R=Ph, 6: R=CH[dbnd]CH2, 7: R=Me], which, upon treatment with CF3CH2OH/Et3N, were subsequently converted to the P-trifluoroethoxy derivatives, Me3SiN[dbnd]P(CH[dbnd]CH2)(R)OCH2CF3 [8: R=Ph, 9: R=CH[dbnd]CH2, 10: R=Me]. Compounds 1–10, which are of interest as potential precursors to P-vinyl substituted poly(phosphazenes), were fully characterized by elemental analyses (except for the thermally unstable P-Br derivatives 5–7) and NMR spectroscopy (1H, 13C, and 31P) including complete analysis of the vinylic proton splitting patterns via HOM2DJ experiments.  相似文献   

2.
Reactions of triorganotin chlorides with potassium salt of O-alkyl trithiophosphate [ROP(S)(SK)2; R = Me, Pri, Ph] in 2:1 molar ratio in anhydrous benzene yield triorganotin O-alkyl trithiophosphate of the type ROP(S) [SSnR′3]2 R = Me, Pri; Ph, R′ = Prn, Bun, Ph] which are found to be monomeric in nature. These complexes are soluble in common organic solvents. Similar reactions of diorganotin chloride with dipotassium salt of S-alkyl trithiophosphate yield diorganotin-S-alkyl trithiophosphate of the type [(RS)P(O)S2]2SnR′2; R = Me, Pri; R′ = Me, Et, Ph, which also are found to be monomeric in nature and are soluble in common organic solvents. The newly synthesized derivatives have been characterized by physicochemical and spectroscopic techniques, IR, NMR (1H, 31P, and 119Sn).  相似文献   

3.
Preparation, Properties, and Reaction Behaviour of 2-(Dimethylaminomethyl)phenyl- and 8-(Dimethylamino)naphthylsubstituted Lithium Hydridosilylamides – Formation of Silanimines by Elimination of Lithium Hydride The hydridosilylamines Ar(R)Si(H)–NHR′ ( 2 a : Ar = 2-Me2NCH2C6H4, R = Me, R′ = CMe3; 2 b : Ar = 2-Me2NCH2C6H4, R = Ph, R′ = CMe3; 2 c : Ar = 2-Me2NCH2C6H4, R = Me, R′ = SiMe3; 2 d : Ar = 8-Me2NC10H6, R = Me, R′ = CMe3; 2 e : Ar = 8-Me2NC10H6, R = Ph, R′ = CMe3; 2 f : Ar = 8-Me2NC10H6, R = Me, R′ = SiMe3) have been synthesized from the appropriate chlorosilanes Ar(R)SiHCl either by reaction with the stoichiometric amount of Me3CNHLi ( 2 a , 2 b , 2 d , 2 e ) or by coammonolysis in liquid NH3 with chlorotrimethylsilane in molar ratio 1 : 3 ( 2 c , 2 f ). Treatment of 2 a–2 f with n-butyllithium in equimolar ratio in n-hexane resulted in the lithiumhydridosilylamides Ar(R)Si(H)–N(Li)R′ 3 a–3 f . The frequencies of the Si–H stretching vibration and 29Si–1H coupling constants in the amides are smaller than in the analogous amines indicating a higher hydride character for the hydrogen atom of the Si–H group in the amides compared to the amines. Results of NMR spectroscopic studies point to the existence of a (Me2)N → Si coordination bond in the 8-(dimethylamino)naphthyl-substituted amines and amides. The amides 3 a–3 c are stable under refluxing in m-xylene. At the same conditions 3 d and 3 e eliminate LiH and the silanimines 8-Me2NC10H6(R)Si=NCMe3 ( 4 d : R = Me, 4 e : R = Ph) are formed. The amides 3 a–3 d und 3 f react with chlorotrimethylsilane in THF to give the corresponding N-substitution products Ar(R)Si(H)–N(SiMe3)R′ 6 a–6 d and 6 f in good yields. 4 d is formed as a byproduct in the reaction of 3 d with chlorotrimethylsilane. In n-hexane and m-xylene these amides are little reactive opposite to chlorotrimethylsilane. 6 a–6 d and 6 f are obtained in very small amounts. In the case of 3 d besides the N-substitution product 6 d the silanimine 4 d is obtained. In contrast to chlorotrimethylsilane the amides 3 a and 3 f react well with chlorodimethylsilane in m-xylene producing 2-Me2NCH2C6H4(H) SiMe–N(SiHMe2)CMe3 ( 7 a ) and 8-Me2NC10H6(H)SiMe–N(SiHMe2)SiMe3 ( 7 f ).  相似文献   

4.
《Polyhedron》2002,21(25-26):2531-2535
The reactivities of [trans-R2MoO(NNPhR′)(o-phen)], R=R′=Me (1); R=Me, R′=Ph (2); R=Ph, R′=Me (3); R=R′=Ph (4), toward (i) neutral 1,1-disubstituted hydrazines, R′PhNNH2 and (ii) 1,1-disubstituted hydrazine hydrochlorides, R′PhNNH2·HCl, R′=Me, Ph, were studied in acetonitrile. In the first case, no condensation reaction of the free oxo group was observed under different experimental conditions. In the second case, using a 1:1 precursor/hydrazine hydrochloride molar ratio, the oxo group was also unreactive, instead one methyl or phenyl group bonded to molybdenum was displaced as methane or benzene and was subsequently substituted by one chloride ligand affording complexes formulated as [trans-RClMoO(NNPhR′)(o-phen)], R=R′=Me (5); R=Me, R′=Ph (6); R=Ph, R′=Me, (7)·MeCN; R=R′=Ph, (8)·MeCN. Finally, when a 1:2 precursor/hydrazine hydrochloride molar ratio was used, both methyl and phenyl groups were substituted affording complexes formulated as [trans-Cl2MoO(NNPhR′)(o-phen)], R′=Me (9), R=Ph (10). The new organometallic compounds were characterised by IR, UV–Vis and 1H NMR spectroscopy while the crystal and molecular structure of 6 was determined by X-ray diffraction analysis.  相似文献   

5.
Methyl- or phenylN-carboxamido-complexes of platinum(II) Pt(NHCOR')RL2 (L = PEt3, R = Me, R′ = Me, CH = CH2; L = PEt3, R = Ph, R′ = Me; L = PMe2Ph, R = Ph, R′ = Me, Ph; L = PMePh2, R = Ph, R′ =3, R = Ph, R′ = Me) have been prepared by the reaction of KOH with cationic nitrile complexes [PtR(NCR′)L2]BF4. Thermally unstable hydrido-N-carboxamido-complexes could be detected spectroscopically. IR and NMR (1H, 31P) spectra of some of the complexes indicate the existence of a solvent- and temperature-dependent equilibrium between syn-and anti-isomers arising from restricted rotation about the NC bond of the carboxamido-group. The anti-isomer is favoured by nonpolar solvents and by increasing bulk of L. In the complex [PtH(NCCH CH2)(PEt3)2]BF4, IR and NMR spectra show acrlonitrile to be bound through nitrogen, not through the olefinic CC bond.  相似文献   

6.
Six new arenetelluronic triorganotin esters, namely (R3Sn)4[ArTe(μ‐O)(OH)O2)]2 (Ar = Ph, R = Me: 1 , R = Ph: 2 ; Ar = 3‐Me‐Ph, R = Me: 3 , R = Ph: 4 , Ar = 3‐Cl‐Ph, R = Me: 5 , R = Ph: 6 ), were prepared by treating arenetelluronic acids with the corresponding R3SnCl (R = Me, Ph) with potassium hydroxide in methanol. All complexes were characterized by elemental analysis, FT‐IR, NMR (1H, 13C, 119Sn) spectroscopy, and X‐ray crystallography. The structural analyses indicate that these complexes are isostructural as Sn4Te2 moiety, in which the Te22‐O)2 units are situated in the center and each Te atom is coordinated with two OSnR3 groups on the side. Complexes 1 , 3 , and 5 show one‐dimensional chain and two‐dimensional network supramolecular structures by intermolecular C H···O or C H···Cl interactions. The antitumor activities of these complexes reveal that most arenetelluronic triorganotin esters have powerful antitumor activities with certain regularity.  相似文献   

7.
Reaction of acyl iodides RCOI (R = Me, Ph) with triorganylsilanes R′2R″SiH in toluene gives 50–60% of the corresponding triorganyliodosilanes R′2R″SiI. Triethylsilane reacts with the same acyl iodides under solvent-free conditions to afford the corresponding aldehyde and triethyliodosilane as primary products. Triethyliodosilane undergoes subsequent transformations into hexaethyldisiloxane and triethyl(acyloxy)silane Et3SiOCOR (R = Me, Ph). Reactions of acyl iodides RCOI (R = Me, Ph) with triphenylgermane in the absence of a solvent lead to formation of iodo(triphenyl)germane in more than 90% yield.  相似文献   

8.
Synthesis of Tris(diorganylphosphino)phosphines with Substituents of Low Steric Hindrance The reaction of MIP(SiMe3)2 (MI = Li, Na, K) with diorganylchlorophosphines forms tris(diorganylphosphino)phosphines P(PR2)3 (R = Cy, Ph, i-Pr, n-Pr, Et, Me). In all cases, the stepwise formation reaction proceeds via di- and triphosphines resulting in iso-tetraphosphines which are stable in solution. Only the compounds with bulky substituents (R = Cy, Ph) can be isolated. By using quantumchemical procedures it is possible to get information about the pyramidal structure and the reaction behaviour. In agreement with these results orbitally controlled reactions occur where nucleophiles attack the central phosphorus atom.  相似文献   

9.
Four new chiral triorganotin(IV) carboxylates, [(R3Sn)(O2C13H17)] n (R?=?Me 1, Ph 2), [(R3Sn)(O2C13H17)] (R?=?n-Bu 3), and [(R3Sn)(O4C9H9)] n (R?=?Me 4), have been synthesized by reaction of (S)-(+)-2-(4-isobutyl-phenyl)propionic acid and (R)-(+)-2-(4hydroxyphenoxy)propionic acid with triorganotin(IV) chloride in the presence of sodium ethoxide. The complexes have been characterized by elemental analyses, FT-IR, NMR (1H, 13C, and 119Sn) spectra, and X-ray crystallography diffraction analyses. Structural analyses show that 1 has a 1-D infinite chiral zigzag chain structure. Complexes 2 and 4 have a 1-D spring-like chiral helical chain with a channel, while 3 is a monomer. Antitumor activities of 14 have been studied.  相似文献   

10.
《Polyhedron》1999,18(5):729-733
Equimolar quantities of [Mo (CO) (η2-RC2R′)2Cp] [BF4] (R=R′=Me Ph R=Me R′=Ph) and L L′ or L″ {L L′ or L″= [WI2 (CO){PhP(CH2CH2PPh2)2-PP′} (η2-RC2R′)]} (L R=R′=Me L′ R=R′=Ph L″ R=Me R′=Ph) react in CH2Cl2 at room temperature to give the new bimetallic complexes[Mo (CO) (L L′ or L″–P) (η2-RC2R′)Cp] [BF4] (1–9) via displacement of the alkyne ligand on the molybdenum centre The complexes have been characterised by elemental analysis IR and 1 H NMR spectroscopy and in selected cases by 31 P NMR spectroscopy.  相似文献   

11.
A series of N-[chloro(diorganyl)silyl]anilines RR′Si(NR″Ph)Cl (R, R′ = Me, Ph, CH2=CH, ClCH2, Cl(CH2)3; R″ = H, Me) was prepared via the reaction of diorganyldichlorosilanes with aniline or N-ethylaniline in the presence of triethylamine.  相似文献   

12.
Reactions of the phosphinoacetylenes RR′PCCR″ (R  R′  Ph, R″  H, CF3, Ph, Me, t-Bu; R  R′  C6F5, R″  Ph, Me; R  Ph, R′  Me, R″  Me) with Co2(CO)8 have been studied. Complexes of four types have been characterised: (A)(RR′PC2R″)CO2(CO)6 (R  R′  C6F5, R″  Ph, Me; R  R′  Ph, R″  t-Bu), (B) (RR′PC2R″)2Co4(CO)10 (R  R′  Ph, R″  H, CF3, Ph, Me; R  R′  C6F5, R″  Me; R  Ph, R′  Me, R″  Me), (C) (RR′PC2R″)2Co2(CO)6 (R  R′  Ph, R″  t-Bu), (D) (RR′P(O)C2R″)Co2(CO)6 (R  R′  Ph, R″  t-Bu; R  R′  C6F5, R  Ph). The complexes were characterised by microanalysis, IR, NMR and where possible mass spectra. Substitution reactions of the complexes with tertiary phosphites are described. In complexes of type (A) only the alkyne function is utilised whereas the tetranuclear compounds (B) have structures in which both alkyne and phosphorus moieties are coordinated. Compounds of type (C) are simple disubstituted phosphine complexes of Co2(CO)8 and those of type (D) are μ-alkyne derivatives of acetylenic phosphine oxides. The mechanism of formation of complexes of type (B) is discussed in the light of IR data.  相似文献   

13.
Acyclic and Cyclic Silylhydrazones and Hydrazonylsilanes Dimethylketone-di-tert-butylmethylsilylhydrazone ( 1 ) is obtained in the reaction of the silylhydrazine and dimethylketone by condensation. Di-tert-butyldifluorosilane reacts with lithiated hydrazones to give fluorosilylhydrazones 2–4 , (CMe3)2SiF? NH? N = CRR′, ( 2 : R=Me, R′=CMe3; 3 : R,R′=CHMe2; 4 : R,R′=Ph). The bis(hydrazonyl)silane 5 , (CMe3)2Si(NH? N=CPh2)2, is formed in a molar ratio 1:2. Tris( 6 )- and tetrakis(hydrazonyl)silanes ( 7 ) are obtained from CMe3SiF3 ( 6 ), SiF4 ( 7 ), and lithiated tert-butylmethylketon-hydrazone. The lithium derivatives 8–11 are formed in the reaction of 1–4 with butyllithium. Bis(silyl)hydrazones ( 12–15 ) are the result of the reaction of halogensilanes and the lithium derivatives of 1(8), 2(9) and 3(10); 12 : (CMe3)2SiMe(CMe3SiF2)-N? N=CMe2, 13 : (CMe3)2MeSi(PhSiF2)N? N=CMe2, 14 : (CMe3)2SiF(Me3Si)N? N=C(Me)(CMe3), 15 : (CMe3)2SiF (SiMe3)N? N=C(CHMe2)2. Saltelimination out of 10 und 11 leads to the formation of the first bis(imino)-2,2,4,4-cyclodisilazanes, 16 :[(CMe3)2 SiN? N=C(CHMe2)2]2, 17 : [(CMe3)2SiN? N=CPh2]2. Cyclisation occurs in the reaction of 12 und 14 with tert-butyllithium, 2-silyl-1,2-diaza-3-sila-5-cyclopentenes ( 18 and 19 ) are formed. Dilithiated 1 reacts with SiF4 to give the spirocyclic compound 20 . HF-elimination from 18 and dimerisation of the intermediate diazasilacyclopentadiens lead to the formation of the tricyclus 21 .  相似文献   

14.
Reaction of [Rh(η4-cod)(S)-amino-acidato] ((S)-amino acidate?=?(S)-O2C-CHR-NH2; cod?=?cycloocta-1,5-diene) with 1,2-bis(diphenylphosphino)ethane (dppe) affords the ionic [Rh(dppe)2]{(S)-O2C-CHR-NH2} (R?=?Me, I; Ph, II) complexes. Reactions with 1,3-bis(diphenylphosphino)propane (dppp) or 2,2,2-tris(diphenylphosphinomethyl)ethane (triphos) give the neutral [Rh(dppp){(S)-O2C-CHR-NH2}] (R?=?Me, III; Ph, IV) or [Rh(η2-triphos){(S)-O2C-CHR-NH2}] (R?=?Me, V; Ph, VI) complexes. The complexes are characterized by elemental analysis, UV–Vis-, IR-, 1H/31P{1H} NMR- and mass-spectroscopy. Two molecules of dppe coordinate to the Rh(I) symmetrically by replacing both cod and (S)-amino acidate to give III. Only one molecule of dppp (or triphos) coordinate to the Rh(I) asymmetrically by replacing only cod to give IIIVI. Two diastereomeric Rh(I)-complexes are present in V and VI. The results further suggest that the ligands are arranged in a distorted square planar geometry around the Rh(I) centre. The use of triphos instead of dppe or dppp yields the same coordination sphere.  相似文献   

15.
The cathodic reduction of the trihalophosphane complexes (CO)5CrPX3 (1a, X = Cl; 1b, X = Br) leads to the binuclear complexes (CO)5 Cr(X2PPX2)Cr(CO)5, (2a, X = Cl; 2b, X = Br). Reductive dehalogenation of coordinated organodihalophosphanes, (CO)5CrPRX2 (3a, R = Me, X = Cl; 3b, R = Ph, X = Cl; 3c, R = Me, X = Br; 3d, R = Ph, X = Br), in the presence of dimethyldisulfane yields bis(methylthio)organophosphane complexes, (CO)5CrPR(SCH3)2 (5a, R = Me; 5b, R = Ph). The phosphinidene complexes (CO)5 CrPR are discussed as the reactive intermediates.The organodibromophosphane complexes 3c and 3d can also be partially reduced in the presence of dimethyldisulfane, and (CO)5CrPBrR(SCH3) (7a, R = Me; 7b, R = Ph) is obtained. Radical intermediates are probable.  相似文献   

16.
Reactions of bis(pyridin-2-yl)ketone with tin tetrahalides, SnX4 (X = Cl or Br), or organotin trichlorides, RSnCl3 (R = Ph, Bu or CH2CH2CO2Me), in ROH (R = Me or Et) readily produces RObis(pyridin-2-yl)methanolato)tin complexes, [5: RO(py)2C(OSnX3)] (5: R,X = Me,Cl; Et,Cl; Et,Br) or [6: MeO(py)2C(OSnCl2R)] (R = Ph, Bu, CH2CH2CO2Me). In addition, halide exchange reaction between SnI4 and (5: R,X = Me,Cl) occurred to give (5: R,X = Me,I). The crystal structures of six tin(IV) derivatives indicated, in all cases, a monoanionic tridentate ligand, [RO(py)2C(O)-N,O,N], arranged in a fac manner about a distorted octahedral tin atom. The Sn–O and Sn–N bonds lengths do not show much variation amongst the six complexes despite the differences in the other ligands at tin.  相似文献   

17.
The electrochemical reduction of 3,3′-bi(2-R-5,5-dimethyl-4-oxopyrrolinylidene) 1,1′-dioxides (R = CF3, Me, Ph, But), which are cyclic dinitrons with conjugated C=C bond, in acetonitrile is an EE process producing stable radical anions and dianions, whereas the electrochemical oxidation is an EEC (R = Me, Ph) or EE process (R = But) with formation of radical cations (except for the case of R = CF3) and dications (R = But) stable under standard conditions. Radical cations of the dioxides with R = Me, Ph, and But and radical anions of the whole series of the compounds studied, including R = CF3, were characterized by ESR spectroscopy combined with electrochemical measurements and quantum-chemical calculations. The electrochemical behavior of the But-substituted dinitron is unique: the EE processes in the region of negative and positive potentials with formation of the dianion, radical anion, radical cation, and dication stable at T = 298 K were observed for the first time within one cycle of potential sweep in the CV curve measured in MeCN. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1148–1154, May, 2005.  相似文献   

18.
Electrochemical reduction of trans-2-allyl-6-R-1,2,3,6-tetrahydropyridines (R = Me, All, and Ph) on the mercury cathode in anhydrous DMF (with 0.1 M Bu4NClO4 as the supporting electrolyte) resulted in catalytic hydrogen evolution, while in the case of anhydrous DMF the electrochemical activity of the endocyclic double bond was dictated by the nature of the R substituent at the carbon atom neighboring the double bond. The electrocatalytic hydrogenation of the piperideines under study on the Ni (Nidisp/Ni) cathode in 40% aqueous DMF in the presence of a tenfold excess of AcOH yielded the corresponding trans-2-propyl-6-R1-piperidines (R1 = Me, Pr, and Ph). Using trans-2,6-diallyl-1,2,3,6-tetrahydropyridine as an example, the conditions (with annealed copper as the cathode) for selective hydrogenation of the double bonds in allyl substituents with preservation of the endocyclic double bond were found.  相似文献   

19.
New organotin(IV) complexes with empirical formula Sn(SNNNS)R2, where SNNNS is the dianionic form of 2,6-diacetylpyridine Schiff bases of S-methyldithiocarbazate (H2dapsme) or S-benzyldithiocarbazate (H2dapsbz) and R = Ph or Me, have been prepared and characterized by IR, UV-Vis, NMR and Mössbauer spectroscopic techniques and conductance measurements. The molecular structures of the Sn(dapsme)R2 (R = Ph and Me) have been determined by single crystal X-ray diffraction techniques. Both complexes have a distorted pentagonal-bipyramidal geometry in which the tin is coordinated by a dinegatively charged pentadentate chelating agent via pyridine nitrogen, two azomethine nitrogens, and two thiolate sulfurs. The five donors (N3S2) provided by the Schiff base occupy the equatorial plane close to a pentagonal planar array while the carbanion ligands occupy axial sites.  相似文献   

20.
Summary The Schiff bases a-(C5H4N)CMe=NNHCOR (R = Ph, 2-thienyl or Me), prepared by condensation of 2-acetylpyridine with the acylhydrazines RCONHNH2, coordinate in the deprotonated iminol form to yield the octahedral complexes, M[NNO]2 M = Co or Ni; [NNOH] = Schiff base and the square-planar complexes, Pd[NNO]Cl. The Schiff bases also coordinate in the neutral keto form yielding the octahedral complexes (M[NNOH]2)Z2 (M = Ni, Co or Fe; Z = C104, BF4 or N03) and complexes of the type M[NNOH]X2 (M = Ni, Co, Fe or Cu; X = Cl, Br or NCS). Spectral and x-ray diffraction data indicate that the complexes M[NNOH]X2 (M = Ni or Fe) are polymeric octahedral, as are the corresponding cobalt complexes having R = 2-thienyl. However, the cobalt complexes Co[NNOH]X2 (X = CI or Br; R = Ph or Me) and the copper complexes Cu[NNOH]CI2 (R = Ph, 2-thienyl or Me) are five-coordinate, while the thiocyanato complex Co[NNOH](NCS)2 (R = 2-thienyl) is tetrahedral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号