首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and Crystal Structure of Metal(I) Hydrogen Sulfates – Ag(H3O)(HSO4)2, Ag2(HSO4)2(H2SO4), AgHSO4, and Hg2(HSO4)2 Hydrogen sulfates Ag(H3O)(HSO4)2, Ag2(HSO4)2 · (H2SO4), and AgHSO4 have been synthesized from Ag2SO4 and sulfuric acid. Hg2(HSO4)2 was obtained from metallic mercury and 96% sulfuric acid as starting materials. The compounds were characterized by X‐ray single crystal structure determination. Ag(H3O)(HSO4)2 belongs to the structure type of Na(H3O)(HSO4). The silver atom is coordinated by 6 + 2 oxygen atoms. In the structure, there are dimers and chains of hydrogen bonded HSO4 tetrahedra. Dimers and chains are connected by the H3O+ ion to form a three dimensional hydrogen network. Ag2(HSO4)2(H2SO4) crystallizes isotypic to Na2(HSO4)2(H2SO4). The coordination number of silver is 6 + 1. The structure of Ag2(HSO4)2(H2SO4) is characterized by hydrogen bonded trimers of HSO4 tetrahedra, which are further connected to chains. For the recently published structure of AgHSO4 the hydrogen bonding system was discussed. There are tetrameres and chains, connected by bifurcated hydrogen bonds. The structure of Hg2(HSO4)2 contains Hg22+ cations with Hg–Hg distance of 2.509 Å. Every mercury atom is coordinated by one oxygen atom at shorter distance (2.18 Å) and three ones at longer distances (2.57 to 3.08 Å). The HSO4 tetrahedra form zigzag chains by hydrogen bonds.  相似文献   

2.
Synthesis and Crystal Structure of K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4), and Na(HSO4)(H3PO4) Mixed hydrogen sulfate phosphates K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4) and Na(HSO4)(H3PO4) were synthesized and characterized by X‐ray single crystal analysis. In case of K2(HSO4)(H2PO4) neutron powder diffraction was used additionally. For this compound an unknown supercell was found. According to X‐ray crystal structure analysis, the compounds have the following crystal data: K2(HSO4)(H2PO4) (T = 298 K), monoclinic, space group P 21/c, a = 11.150(4) Å, b = 7.371(2) Å, c = 9.436(3) Å, β = 92.29(3)°, V = 774.9(4) Å3, Z = 4, R1 = 0.039; K4(HSO4)3(H2PO4) (T = 298 K), triclinic, space group P 1, a = 7.217(8) Å, b = 7.521(9) Å, c = 7.574(8) Å, α = 71.52(1)°, β = 88.28(1)°, γ = 86.20(1)°, V = 389.1(8)Å3, Z = 1, R1 = 0.031; Na(HSO4)(H3PO4) (T = 298 K), monoclinic, space group P 21, a = 5.449(1) Å, b = 6.832(1) Å, c = 8.718(2) Å, β = 95.88(3)°, V = 322.8(1) Å3, Z = 2, R1 = 0,032. The metal atoms are coordinated by 8 or 9 oxygen atoms. The structure of K2(HSO4)(H2PO4) is characterized by hydrogen bonded chains of mixed HnS/PO4 tetrahedra. In the structure of K4(HSO4)3(H2PO4), there are dimers of HnS/PO4 tetrahedra, which are further connected to chains. Additional HSO4 tetrahedra are linked to these chains. In the structure of Na(HSO4)(H3PO4) the HSO4 tetrahedra and H3PO4 molecules form layers by hydrogen bonds.  相似文献   

3.
Synthesis and Crystal Structure of Tetraphenylphosphonium Aqua-bis(tetrasulfido)thionitrosyl Osmate, PPh4[Os(NS)(S4)2(H2O)] PPh4[Os(NS)(S4)2(H2O)] has been prepared as redbrown crystals by reacting PPh4[OsNCl4] with a solution of excess disodium tetrasulfide in dimethylformamide/H2O and characterized by IR spectroscopy and by a crystal structure determination. Space group P21/n, Z = 4, structure solution with 4162 independent reflections, R = 0.059 for reflections with I > 2σ(I). Lattice dimensions at ?40°C: a = 1138.9(5), b = 1301.4(4), c = 2092.7(7) pm, β = 104.74(3)º. Os? N, Os? O, and Os? S distances are 175.2(12), 219.8(12), and 237.5(4)?239.1(4) pm, respectively. The Os?N?S moiety is approximately linear, with an OsNS angle of 171.2(7)º.  相似文献   

4.
Synthesis, Crystal Structure, and Solid State MAS-NMR Spectroscopic Investigation of K5H(CN2)3 Single phase K5H(CN2)3 was synthesized by reaction of KHCN2 with metallic potassium in liquid ammonia or by reaction of KNH2 with melamine C3N3(NH2)3 at 320 °C, respectively. The crystal structure was determined from X-ray powder and single crystal data: K5H(CN)3, space group Im3m, a = 795.68(7) pm, Z = 2, R1 = 0.025, wR2 = 0.0438. In the solid K5H(CN2)3 contains K+ and CN22–, the anions exhibit D∞h symmetry. According to 1H and 13C solid state MAS-NMR investigations, temperature dependent impedance spectroscopy, and FTIR spectroscopy the protons are only loosely bound to the CN22– ions. The proton conductivity shows a sharp increase above 70 °C.  相似文献   

5.
A New Potassium Hydrogensulfate, K(H3O)(HSO4)2 — Synthesis and Structure Single crystals of the new compound K(H3O)(SO4)2 are synthesized from the system potassium sulfate/sulfuric acid. The up to day not described compound crystallizes in the monoclinic space group P21/c with the unit cell parameters a = 7.203(1) b = 13.585(2) and c = 8.434(1) Å, β = 105.54(1)°, V = 795.1 Å3, Z = 4 and Dx = 2.107 g · cm?3. There are two crystallographically different tetrahedral SO3(OH) anions. The first kind S1 tetrahedra forms dimers, whereas the second kind S2 forms infinite chains bonded via hydrogen bridges. The S1 dimers are linked to the S2 chains via oxonium ions (hydrogen bonds). Potassium is coordinated by 8 oxygen atoms which belong to four different SO3(OH) tetrahedra. These potassium oxygen polyhedra are connected by common edges forming chains running parallel z.  相似文献   

6.
A New Lithium Hydrogen Sulfate, Li2(HSO4)2(H2SO4) – Synthesis and Crystal Structure The title compound crystallizes in good shaped single crystals from the system lithium sulfate/sulfuric acid in the orthorhombic space group Pccn, unit cell parameters a = 17.645(4), b = 5.378(1), c = 10.667(3) Å. V = 1 012.2 Å3, Z = 4, Dx = 2.009 g cm?3. There are two types of SO4 tetrahedra, SO3(OH) and SO2(OH)2, connected via hydrogen bonds forming layers parallel to the xy-plane. The layers are linked by Li atoms, which are tetrahedral coordinated by O atoms coming two by two from neighboured layers.  相似文献   

7.
Synthesis and Crystal Structure of [KNPPh3]6 · 4 C7H8 [KNPPh3]6 · 4 C7H8 ( 1 ) has been prepared from HNPPh3 and potassium hydride in boiling toluene forming pale yellow moisture sensitive crystals, which were characterized by a crystal structure determination. Space group P1, Z = 2, lattice dimensions at –83 °C: a = 1517.9(2), b = 1894.0(2), c = 2150,4(2) pm, α = 84.39(1)°, b = 89.31(1)°, c = 89.97(1)°, R1 = 0.0684. 1 forms a K6N6 skeleton of a double cube with a common face of two K and two N atoms, the latter being fivefold coordinated by four K atoms and the P atom of the PPh3 groups.  相似文献   

8.
Synthesis and Structure of New Sodium Hydrogen Sulfates Na(H3O)(HSO4)2, Na2(HSO4)2(H2SO4), and Na(HSO4)(H2SO4)2 Three acidic sodium sulfates have been synthesized from the system sodium sulfate/sulfuric acid and have been crystallographically characterized. Na(H3O)(HSO4)2 ( A ) crystallizes in the space group P21/c with the unit cell parameters a = 6.974(2), b = 13.086(2), c = 8.080(3) Å, α = 105.90(4)°, V = 709.1 Å3, Z = 4. Na2(HSO4)2(H2SO4) ( B ) is orthorhombic (space group Pna21) with the unit cell parameters a = 9.970(2), b = 6.951(1), c = 13.949(3) Å, V = 966.7 Å3 and Z = 4. Na(HSO4)(H2SO4)2 ( C ) crystallizes in the triclinic space group P1 with the unit cell parameters a = 5.084(1), b = 8.746(1), c = 11.765(3) Å, α = 68.86(2)°, β = 88.44(2)°, γ = 88.97(2)°, V = 487.8 Å3 and Z = 2. All three compounds contain SO4 tetrahedra as HSO4? anions and additionally in B and C in form of H2SO4 molecules. The ratio H:SO4 determines the connectivity degree in the hydrogen bond system. In A , there are zigzag chains and dimers additionally connected via oxonium ions. Complex chains consisting of cyclic trimers (two HSO4? and one H2SO4) are present in B . In structure C , several parallel chains are connected to columns due to the greater content of H2SO4. Sodium cations show a distorted octahedral coordination by oxygen in all three structures, the NaO6 octahedra being “isolated” (connected via SO4 tetrahedra only) in A . Pairs of octahedra with common edge form Na2O10 dimeric units in C . Such double octahedra are connected via common corners forming zigzag chains in B .  相似文献   

9.
Potassium Triamidostannate(II), K[Sn(NH2)3] – Synthesis and Crystal Structure Rusty‐red crystals of K[Sn(NH2)3] were obtained by the reaction of SnBr2 and KNH2 in a 1 : 3 molar ratio in liquid ammonia at 233 K in the form of platelets. The structure was determined from single crystal X‐ray diffractometer data: Space group P3; Z = 2; a = 6.560(1) Å, c = 7.413(2) Å. The structure contains trigonal pyramidal complex anions [Sn(NH2)3] and potassium cations. These ions are arranged to one another following the motif of a strongly distorted hexagonal close packing of sequence A(Sn) B(Sn) A′(K) B′(K) …  相似文献   

10.
Synthesis, Crystal Structure and Magnetism of Sodium Tetrachlorotitanate(II), Na2TiCl4 Na2TiCl4 is obtained as single crystals by metallothermic reduction of TiCl3 with sodium (525°C, 90 d, Ta container). Pure powder samples may be prepared by synproportionation of TiCl3 with Ti in the presence of NaCl (950–520°C, 21 d). The structure refinement from four-circle diffractometer data confirms that Na2TiCl4 is isotypic with Sr2PbO4 (orthorhombic, space group Pbam (No. 55), Z = 2 a = 694.2(1), b = 1 198.9(2), c = 385.6(1) pm, R = 0.055, Rw = 0,038). Ti2+ is surrounded by a distorted octahedron of Cl?. The octahedra are connected via common edges to chains, [TiCl2/1Cl4/2]2?, that run in the [001] direction. Magnetic susceptibility data were recorded in the 2 to 300 K temperature range at various field strengths. The interpretation of the data was carried out with the aid of crystal-field calculations taking magnetic interactions into account. The non-Curie behaviour of the reciprocal magnetic susceptibility of Ti2+ in Na2TiCl4 is due to the influence of spin-obit coupling.  相似文献   

11.
Syntheses and Crystal Structures of the Rhenium(VII) Nitride Chlorides ReNCl4 and ReNCl4·H2O Rhenium(VII) nitride chloride, ReNCl4 ( 1 ) is obtained in form of brown needles with metallic luster by the reaction of ReCl5 with Cl3VNCl at 140 °C under vacuum in a sealed glass ampoule. It crystallizes in the tetragonal space group I4 with the lattice parameters a = 826.7(4), c = 405.1(2) pm, and Z = 2. The square pyramidal molecules are connected by asymmetric nitrido bridges to form chains along the crystallographic c axis. The shorter Re‐N distance of 163.0(5) pm corresponds to a triple bond, while the pronounced longer distance of 242.0(5) pm can be interpreted with a weak donor bond. The reaction of ReCl5 with VN at 170 °C under vacuum in a sealed glass ampoule yields red needles of ReNCl4·H2O ( 2 ). It crystallizes in the orthorhombic space group Pnma with a = 1075.4(2), b = 1108.5(2), c = 547.7(5) pm and Z = 4. The Re atoms exhibit a distorted octahedral coordination with the aqua ligand in trans position to the nitrido ligand. The Re‐N triple bond has a bond distance of 166.1(11) pm. The complexes are connected by hydrogen bridges O‐H···N to form chains.  相似文献   

12.
Synthesis and Structure of K[Au(AuCl)(AuPPh3)8)](PF6)2 Photolysis of a mixture of Ph3PAuCl and Ph3PAuN3 (1 : 3) in toluene/THF yields in the presence of Na2[(C5H5)V(CO)3] the new cluster cation [Au(AuCl)(AuPPh3)8]+. It crystallizes from CH2Cl2 after addition of KPF6 as K[Au(AuCl)(AuPPh3)8](PF6)2 · 4 CH2Cl2. The compound forms a tetragonal structure with the space group P4/n and a = 2552.6(3), c = 1401.1(1) pm, Z = 2. The cluster cations with a spheroidal topology are built up of a centered Au8 crown whose central gold atom in addition binds a AuCl group. The cluster occupies with its center and AuCl group a fourfold axis of the space group. The radial bonds between the central and the peripheral Au atoms are in the range of 263.7 to 268.4 pm, while the distances between the peripheral atoms are longer with 291.7 to 350.9 pm.  相似文献   

13.
Synthesis and Crystal Structure of [Na(12-Crown-4)2]2[Hg(Se4)2] · 1.5 DMF . The title compound has been prepared by the reaction of Na2Se4 with mercury acetate in DMF solution in the presence of 15-crown-5, forming dark red crystal needles. [Na(12-crown-4)2]2[Hg(Se4)2] · 1.5 DMF crystallizes in the space group C2/c with eight formula units per unit cell. The structure was determined with 3 824 observed unique reflections, R = 0.085. Lattice dimensions at - 70°C: a = 2 884(2), b = 1 407.7(7), c = 2 843(2) pm, β = 93.93(5)°. The structure consists of [Na(12-crown-4)2]+ ions with a sandwichlike coordination of the crown ether molecules, and of [Hg(Se4)2]2? ions, in which the mercury atom is coordinated by two tetraselenido ions in a chelating fashion. The [Hg(Se4)2]2? ions are arranged to infinite chains via Se…?Se contacts.  相似文献   

14.
Synthesis and Crystal Structure of Hydrogen Selenates of Divalent Metals – M(HSeO4)2 (M = Mg, Mn, Zn) and M(HSeO4)2 · H2O (M = Mn, Cd) New hydrogen selenates M(HSeO4)2 (M = Mg, Mn, Zn) and M(HSeO4)2 · H2O (M = Mn, Cd) have been synthesized using MSeO4 (M = Mg, Mn, Zn, Cd) and 90% selenic acid as starting materials. The crystal structures have been determined by X-ray single crystal crystallography. The compounds M(HSeO4)2 (M = Mg, Zn) belong to the structure type of Mg(HSO4)2, whereas Mn(HSeO4)2 forms a new structure type. Both hydrogen selenate monohydrates are isotypic to Mg(HSO4)2 · H2O. In all compounds the metal atoms are octahedrally coordinated by oxygen atoms of different HSeO4-tetrahedra. In the HSeO4-tetrahedra the Se–OH-distances (mean value 1.70 Å) are about 0.1 Å longer than Se–O-distances (mean value 1.62 Å). In the structure of M(HSeO4)2 (M = Mg, Zn) there are zigzag chains of hydrogen bonded HSeO4-tetrahedra. The structure of Mn(HSeO4)2 is characterized by chains of HSeO4-tetrahedra in form of screws. Hydrogen bonds from and to water molecules connect double layers of MO6-octahedra and HSeO4-tetrahedra in the structures of M(HSeO4)2 · H2O.  相似文献   

15.
Synthesis and Crystal Structure of the Nonaselenide [Sr(15-crown-5)2]Se9 The title compound was prepared by the reaction of excess selenium with strontium diselenide in DMF in the presence of 15-crown-5. [Sr(15-crown-5)2]Se9 forms black crystals, which are soluble in DMF. They were characterized by FIR spectroscopy and by an X-ray structure determination. Space group P21/n, Z = 4, 2 381 observed unique reflections, R = 0.073. Lattice dimensions at 19°C: a = 1 228.7, b = 1 893.4, c = 1 575.7 pm, β = 99.15°. The compound consists of [Sr(15-crown-5)2]2+ ions in which the strontium ion is coordinated by the oxygen atoms of the crown ether molecules in a sandwich-like fashion, and of Se92? ions with a chain structure, which has a topolocical resemblance with the bicyclic ion Se.  相似文献   

16.
Synthesis and Crystal Structure of (C5H5)Mo(CO)3(AuPPh3) and [(C5H5)Mo(CO)2(AuPPh3)4]PF6 CpMo(CO)3(AuPPh3) is obtained by the reaction of Li[CpMo(CO)3] with Ph3PAuCl at ?95°C in CH2Cl2. It crystallizes in the monoclinic space group C2/c with a = 2625.1(7), b = 883.2(1), c = 2328.4(7) pm, β = 116.39(1)° und Z = 8. In the complex the AuPPh3 group is coordinated to the CpMo(CO)3 fragment with a Au? Mo bond of 271,0 pm. The Mo atom thus achieves a square pyramidal coordination with the center of the Cp ring in apical position. CpMo(CO)3(AuPPh3) reacts under uv irradiation with an excess of Ph3PAuN3 to afford the cluster cation [CpMo(CO)2(AuPPh3)4]+. It crystallizes as [CpMo(CO)2(AuPPh3)4]PF6 · 2 CH2Cl2 in the orthorhombic space group P212121 with a = 1553.9(1), b = 1793.8(2), c = 2809.8(7) pm und Z = 4. The five metal atoms form a trigonal bipyramidal cluster skeleton with the Mo atom in equatorial position. The Mo? Au distances range from 275.5 to 280.8 pm, and the Au? Au distances are between 281.2 and 285.6 pm.  相似文献   

17.
Synthesis and Crystal Structure of the Selenyl-Phosphoraneiminato Complex SeO(NPPh3)2 SeO(NPPh3)2 has been prepared from SeO2 and Me3SiNPPh3 in a SeO2 suspension in acetonitrile, forming colourless crystals. The compound is characterized by IR spectroscopy and by a crystal structure determination. Space group P1 , Z = 2, structure solution with 5 344 observed unique reflections, R = 0.064. Lattice dimensions at ?40°C: a = 931.6, b = 947.6, c = 1 762 pm, α = 77.50°, β = 81.78°, γ = 79.23°. The compound forms monomeric molecules in which the selenium atom is φ-tetrahedrally surrounded with bond lengths SeO = 161.7 pm and SeN = 179.9 and 181.6 pm.  相似文献   

18.
Synthesis and Crystal Structure of LiHSO4 Single crystals of the new compound LiHSO4 are synthezised from the system Lithiumsulfate/Sulfuric acid. The up to day not determined structure of the title compound is monoclinic, space group P21/c with the lattice constants a = 5.234(2), b = 7.322(1) and c = 8.363(1) Å, b? = 90.02(2)°. The volume of the unit cell has been determined to V = 320.5 Å3, the number of formula units to Z = 4 and the density to Dx = 2.156 g cm?3. There are crystallographically identical SO3(OH)- and LiO4-tetrahedra in the structure. Every tetraheda is linked to four different tetrahedra of the other sort. Two neighboured LiO4 terahedra form a common edge. In that way layers are formed running parallel the yz-plane. These layers are connected over hydrogen bonds.  相似文献   

19.
Synthesis, Crystal Structure, and Vibrational Spectra of Dimethylphosphonium Tetrachloroaluminate, H2PMe2+AlCl4 H2PMe2+AlCl4 was synthesized by the reaction of Me2PH with HCl and AlCl3 in CH2Cl2. The structure of the compound was determined by X‐ray structure determination. H2PMe2+AlCl4 crystallizes in the monoclinic space group P21/c with a = 14.445(1), b = 11.344(1) and c = 12.394(1) Å, β = 90.00(1)°, with 8 formula units per unit cell. The frequencies obtained by Raman and infrared spectroscopy were assigned to the normal modes of the H2PMe2+ and AlCl4 units.  相似文献   

20.
Sulfates and Hydrogensulfates of Erbium: Er(HSO4)3-I, Er(HSO4)3-II, Er(SO4)(HSO4), and Er2(SO4)3 Rod shaped light pink crystals of Er(HSO4)3-I (orthorhombic, Pbca, a = 1195.0(1) pm, b = 949.30(7) pm, c = 1644.3(1) pm) grow from a solution of Er2(SO4)3 in conc. H2SO4 at 250 °C. From slightly diluted solutions (85%) which contain Na2SO4, brick shaped light pink crystals of Er(HSO4)3-II (monoclinic, P21/n, a = 520.00(5) pm, b = 1357.8(1) pm, c = 1233.4(1) pm, β = 92.13(1)°) were obtained at 250 °C and crystals of the same colour of Er(SO4)(HSO4) (monoclinic, P21/n, a = 545.62(6) pm, b = 1075.6(1) pm, c = 1053.1(1) pm, β = 104.58(1)°) at 60 °C. In both hydrogensulfates, Er3+ is surrounded by eight oxygen atoms. In Er(HSO4)3-I layers of HSO4 groups are connected only via hydrogen bridges, while Er(HSO4)3-II consists of a threedimensional polyhedra network. In the crystal structure of Er(SO4)(HSO4) Er3+ is sevenfold coordinated by oxygen atoms, which belong to four SO42–- and three HSO4-tetrahedra, respectively. The anhydrous sulfate, Er2(SO4)3, cannot be prepared from H2SO4 solutions but crystallizes from a NaCl-melt. The coordination number of Er3+ in Er2(SO4)3 (orthorhombic, Pbcn, a = 1270.9(1) pm, b = 913.01(7) pm, c = 921.67(7) pm) is six. The octahedral coordinationpolyhedra are connected via all vertices to the SO42–-tetrahedra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号