首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To obtain thermally stable and mechanically strong sodium and lithium conducting polymers, we prepared Na+ and Li+ poly(phenylene terephthalamide sulfonate salts) (MW ~ 5500). We also synthesized oligo(ethylene oxide) (3, 5, or 7 units of ethylene oxide) substituted ethylene carbonate and poly[oxymethylene-oligo(oxyethylene)]. These are high boiling point liquids with high dielectric constants as well as metal chelating properties. Polyelectrolyte systems were prepared by mixing Na+ or Li+ poly(phenylene terephthalamide sulfonate) salts with various amounts of modified ethylene carbonate and/or poly[oxymethylene-oligo(oxyethylene)]. Films (0.1–0.5 mm thick) obtained from the blends were found to have considerable mechanical strength; forming free standing films. The ionic conductivities of the Na+ and Li+ polyelectrolyte systems were 10?6?10?5 S/cm at 25°C. Thermal properties of these blend systems were investigated in detail. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
A series of aliphatic polyesters of sebacoyl chloride and poly(ethylene glycol) containing a different number of ethylene oxide groups was synthesized and characterized. These polyesters were complexed with lithium perchlorate to obtain a new class of polymer electrolyte. The relationships between the structure and properties of these polymer electrolytes were investigated. The main factor that affects the ionic conductivity in these systems was found to be the solvating capacity of the polyester for the lithium salt. These polymer electrolytes showed ionic conductivities up to 10?5 ? 10?4 S/cm at 25°C. The mechanical strength was improved by cross-linking, and the cross-linked polyester complexed with a LiCIO4 salt showed an ionic conductivity of 2 × 10?5 S/cm at room temperature. 7Li NMR spin-spin relaxation and dielectric relaxation studies were also carried out to investigate the local environments and dynamics of ions in the polymer electrolytes. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
Solid polymer electrolytes (SPEs) with high ionic conductivity and acceptable mechanical properties are of particular interest for increasing the performance of batteries. In the present work, SPEs based on poly(ethylene oxide)/poly (vinyl pyrrolidone) (PEO/PVP) with various lithium salts were prepared by solvent casting technique. The amorphous nature of the polymer-salt complex was studied by X-ray diffraction analysis. The complexation of the prepared electrolytes was confirmed by Fourier transform infrared analysis. Ionic conductivity as a function of frequency was studied at various temperatures in the range of 303–353 K. The maximum ionic conductivity value was found to be 1.08 × 10?5 S/cm for the film containing lithium bis trifluoromethane sulfonoimide (LiN[CF3SO2]2) at room temperature and the temperature dependent ionic conductivity values seem to obey Vogel-Tamman-Fulcher relation. Thermogravimetry was used to ascertain the thermal stability of the electrolytes. Photoluminescence measurements demonstrated that the sample having maximum ionic conductivity shows the minimum luminescence intensity. Ultra violet-visible analysis reveals that the values of the band gap energies were changed with the addition of various lithium salts. Porosity of the sample containing lithium bis trifluoromethane sulfonoimide (LiN[CF3SO2]2) was studied by Atomic force microscope.  相似文献   

4.
Organic semiconductors based on thiopyrilium hexachlorostannate salts with a conductivity of 10?6 to 10?2 S cm?1 possess high electrochemical activity, which makes them promising materials for energy and information converters. When in contact with an alkali metal, they generate an emf due to the formation of a transition layer. The latter is an electronic dielectric, which ensures a stable emf and acts in an electric field as a unipolar conductor by the lithium and sodium cations. Cathodic-reduction products are shown to be solid electrolytes with conduction by the alkali metal and possess an electroconductivity of 10?4 to 10?3 S cm?1 at 298 K. Chemical synthesis is used to insert the lithium and sodium cations in the salts and manufacture solid electrolytes with ionic conduction. The synthesized products are examined by methods of impedance, galvano-and potentiometry, spectroscopy, and x-ray diffraction and elemental analyses.  相似文献   

5.
Salt‐containing membranes based on polymethacrylates having poly(ethylene carbonate‐co‐ethylene oxide) side chains, as well as their blends with poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP), have been studied. Self‐supportive ion conductive membranes were prepared by casting films of methacrylate functional poly(ethylene carbonate‐co‐ethylene oxide) macromonomers containing lithium bis(trifluorosulfonyl)imide (LiTFSI) salt, followed by irradiation with UV‐light to polymerize the methacrylate units in situ. Homogenous electrolyte membranes based on the polymerized macromonomers showed a conductivity of 6.3 × 10?6 S cm?1 at 20 °C. The preparation of polymer blends, by the addition of PVDF‐HFP to the electrolytes, was found to greatly improve the mechanical properties. However, the addition led to an increase of the glass transition temperature (Tg) of the ion conductive phase by ~5 °C. The conductivity of the blend membranes was thus lower in relation to the corresponding homogeneous polymer electrolytes, and 2.5 × 10?6 S cm?1 was recorded for a membrane containing 10 wt % PVDF‐HFP at 20 °C. Increasing the salt concentration in the blend membranes was found to increase the Tg of the ion conductive component and decrease the propensity for the crystallization of the PVDF‐HFP component. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 79–90, 2007  相似文献   

6.
Abstract

Polymer electrolytes based on blends of poly(ethylene oxide) (PEO) with various stereoisomers of poly(methyl methacrylate) (PMMA) were studied by means of impedance spectroscopy and DSC. It was found that isotactic poly(methyl methacrylate) (1PMMA)-based electrolytes exhibit ambient temperature conductivities at least one order of magnitude higher than the electrolytes containing other stereoisomers of PMMA. The highest value of room temperature conductivity equal to 9 × 10?5 S/cm was measured for a sample containing 30 wt% IPMMA. The effect observed results from the presence of a flexible amorphous phase in PEO-IPMMA blends which is favorable for fast ionic transport. A small increase of ionic conductivity with decreasing molecular weight of the added atactic poly(methyl methacrylate) was also observed.  相似文献   

7.
Composite polymer electrolytes based on poly(ethylene oxide)-polysiloxane/l-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide/organomontmorillonite(PEO-PDMS/1L/OMMT) were prepared and characterized.Addition of both an ionic liquid and OMMT to the polymer base of PEO-PDMS resulted in an increase in ionic conductivity.At room temperature,the ionic conductivity of sample PPB100-OMMT4 was 2.19×10~3 S/cm.The composite polymer electrolyte also exhibited high thermal and electrochemical stability and may potentially be applied in lithium batteries.  相似文献   

8.
A new class of polyethers has been prepared by the Mitsunobu coupling of poly(4-vinyl phenol), P4VP, with low molecular weight poly(ethylene glycol)methyl ether. These comb-like polymers, having ca. 20–30% residual phenols, were characterized by IR, DSC, and TGA. Results of thermal analysis on the polymers suggest thermal stability to at least 300°C and a glass transition temperature in the range ?30 to ?40°C. Complexes with LiPF6 gave conductivities of ca. 1 × 10?5 S/cm at room temperature. The polymers were blended with plasticized poly(vinylidene fluoride) (PVDF) to prepare porous films and subsequently infiltrated with lithium salts and ethylene and ethyl methyl carbonate. Ionic conductivities of these hybrid films were measured from ?20°C to 40°C. Conductivities as high as 2.4 × 10?3 S/cm are observed at room temperature. The electrochemical stability of hybrid materials was studied by cyclic voltammetry.  相似文献   

9.
Polysiloxanes with covalently attached oligo ethylene oxide and di-t-butylphenol ( I ), naphthol ( II ), and hexafluoropropanol ( III ) were synthesized. The crosslinked polymers with a hexamethylene spacer were also prepared. The ion conductivities of the Li, Na, and K salts were measured as a function of temperature. The highest conductivities for K and Na of I at 30°C were 5.5 × 10?5 and 5.0 × 10?5 S/cm, respectively, when the ratio of the ion to ethylene oxide unit was 0.014. On the other hand, Li conductivity was 8.0 × 10?6 S/cm when the ratio between Li and ethylene oxide unit was 0.019. The maximum conductivities of Li ions of II and III were in the order of 10?6 and 10?7 S/cm at 30°C, respectively. When the polymers were crosslinked by a hexamethylene residue, the ion conductivities decreased while the degree of crosslinking increased. The temperature dependence of the cation conductivities of these systems could be described by the Williams-Landel-Ferry (WLF) and the Vogel-Tammann-Fulcher (VTF) equation. The results demonstrate that ion movement in these polymers is correlated with the polymer segmental motion. The order of ionic conductivity was K+ > Na+ ? Li+. This suggests that steric hindrance and π-electron delocalization of the anions attached to polymer backbone have a large effect on ion-pair separation and their ionic conductivities. Thermogravimetric analysis of the polymers indicated that the degradation temperature for I and II were about 100°C higher than for poly(siloxane-g-ethylene oxide). This is due to the antioxidant properties of sterically hindered phenols and naphthols. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
2,6-Di-t-butylphenol and oligo(ethylene oxide) bound covalently to polyisocyanate were synthesized and characterized. The ionic conductivities of their Li, Na, and K phenolates were studied at various temperatures. The conductivities were in the range of 10?7?10?5 S/cm at 30°C. The conductivity of Na and K salts was approximately 102 greater than that of the Li salts. The t-butyl groups serve to dissociate K and Na ions from the phenoxide. The cations, therefore, are more mobile as a result increasing the conductivity. The temperature dependence of ionic conductivity suggests that the migration of ions is controlled by segmental motion of the polymer, shown by linear curves obtained in Vogel–Tammann–Fulchere plots. The polyisocyanate backbone is a rather stiff structure, however, a flexible oligo(ethylene oxide) side chain forms complexes with metal ion. Since the ion transport is associated with the local movement of polymer segments, the rigidity of the polymer backbone does not have much influence on the ion mobility.  相似文献   

11.
Highly conductive solid polymeric electrolytes based upon low molecular weight poly(ethylene glycol) and ethylene oxide/propylene oxide copolymers blended with up to 50% by volume of poly(methyl methacrylate) have been synthesized using LiCF3SO3 (25:1 ether oxygen to cation ratio). Room-temperature ionic conductivities were measured to be in the range 10?4 to 10?5 S/cm for poly(methyl methacrylate) concentrations up to 30% by volume. In some cases, the addition of the poly(methyl methacrylate) enhanced the conductivity. All of the electrolytes studied were either amorphous or crystallized below 0°C. The variation of conductivity with temperature and polymer composition was measured and the results were analyzed in terms of effective medium theory and semiempirical considerations. Ionic transport is coupled to the structural relaxation of the polymer segments. At lower temperatures activated processes were required. Both charge carrier mobility and charge concentration were found to contribute to conduction. The effective medium theory quantitatively describes conductivities of amorphous heterogenous systems of limited miscibility (microphase separation) quite well. For miscible or partially crystalline systems other effects not incorporated in this theory play an important role, and conductivities are measured to be higher than theoretically predicted. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
《Analytical letters》2012,45(7):1413-1424
Abstract

A flow injection analysis study of the potentiometric selectivity of bis[4(5)-tert-butylbenzo]-21-crown-7 (D(tBB)21C7) for cesium over the other alkali metal cations and three alkaline earth cations has been conducted. A PVC matrix membrane containing D(tBB)21C7 as an ionophore was coated on the tip of a silver wire incorporated in a flow cell. No selectivity for cesium over rubidium and only low selectivity over potassium were noted. However, very high selectivities for cesium over sodium, lithium, strontium, calcium, and magnesium were observed. Selectivity of D(tBB)21C7 in the solvent extraction of alkali metal cations was determined by the picrate extraction method. The percent extraction into deuteriochloroform decreased in the order cesium, rubidium > potassium » sodium » lithium. Thus good agreement was observed between the responses of D(tBB)21C7 towards alkali metal cations in polymeric membrane electrodes and in solvent extraction.  相似文献   

13.
The polymer electrolytes composed of poly(acrylonitrile‐co‐lithium methacrylate) [P(AN‐co‐LiMA)], ethylene carbonate (EC), and LiClO4 salts have been prepared. The ion groups in the P(AN‐co‐LiMA) were found to prevent EC from crystallization through their ion–dipole interactions with the polar groups in the EC. This suppression of the EC crystallization could lead to the enhancement of the ion conductivity at subambient temperature. The polymer electrolytes based on the PAN ionomer with 4 mol % ion content exhibited ion conductivities of 2.4 × 10−4 S/cm at −10°C and 1.9 × 10−3 S/cm at 25°C by simply using EC as a plasticizer. In the polymer electrolytes based on the PAN ionomer, ion motions seemed to be coupled with the segmental motions of the polymer chain due to the presence of the ion–dipole interaction between the ion groups in the ionomer and the polar groups in the EC, while the ion transport in the PAN‐based polymer electrolytes was similar to that of the liquid electrolytes. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 247–252, 1999  相似文献   

14.
Polymer electrolytes based on poly(ethylene oxide) and lithium salts have been widely studied in recent years. In order to enhance the room temperature ionic conductivity of PEO-LiX complexes, various techniques, such as addition of plasticizers and crown ether, and also irradiation by γ and electron beams have been investigated. The enhancement of the conductivity by irradiation has been accounted for the decreasing of the crystallinity of PEO-LiX. We reviewed these results and have investigated the degradation processes of PEO using Tb3+ fluorescence probes. We have also studied on the effects of irradiation of polymers such as poly(acrylic acid) (PAA), poly(methacrylic acid) (PMA) and PEO using Tb+3 fluorescence probe. Various monomers containing SO3H and COOH have been grafted on poly(ethylene oxide) using irradiation technique. The structures and ionic conductivities of Li and Na salts of irradiated products were investigated in detail.  相似文献   

15.
Copolymerization of methacrylic acid alkali metal salts (MAAM; M = Li, Na, K, Rb or Cs) and oligo(oxyethylene) methacrylate (MEO) was carried out in bulk or in poly(oligo(oxyethylene) methacrylate) (PMEO) at 60°C. The copolymers of MAAM and MEO which were obtained by bulk polymerization showed a cation conductivity of around 1 × 10?7 S/cm at room temperature. On the other hand, the copolymers obtained by radical polymerization in PMEO, showed a higher cation conductivity (10?6–10?5 S/cm). Furthermore, higher cation conductivity was observed for the copolymer systems containing alkali metal cations with a larger ion radius. This tendency was explained by the strength of the bond between alkali metal cation and ether oxygens. The degree of dissociation had little effect on this difference in the conductivity. The effective dissociation of methacrylic salts was enhanced in the copolymer compared to the homopolymer because of the suppression of the adjacent dissociative carboxylic acid groups. Arrhenius plots for ionic conductivity show the migration of ions along with the segmental motion of the polymer matrix.  相似文献   

16.
Solid polymer electrolyte (SPE) systems based on interpenetrating blends of poly(ethylene oxide‐co‐propylene oxide) and poly(methyl methacrylate) host matrices, with lithium perchlorate as guest salt, were prepared. These electrolytes were presented as free‐standing films, and their thermal and electrochemical properties were characterized by conductivity and electrochemical stability measurements. The properties of the interpenetrating blends of poly(ethylene oxide‐co‐propylene oxide) and poly(methyl methacrylate) host matrices as the electrolyte component of a solid‐state electrochromic device are reported and the results obtained suggest that this electrolyte provides an encouraging performance in this application. The most conducting electrolyte composition of this SPE system is the formulation designated as SPE2‐0PC (5.01 × 10?4 S cm?1 at about 57°C). The lowest decomposition temperature was registered with the SPE6‐15PC composition (233°C). The average transmittance in the visible region of the spectrum was above 41% for all the samples analyzed. After coloration the device assembled with 71 wt% PC presented an average transmittance of 15.71% and an optical density at 550 nm of 0.61. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A novel single lithium‐ion (Li‐ion) conducting polymer electrolyte is presented that is composed of the lithium salt of a polyanion, poly[(4‐styrenesulfonyl)(trifluoromethyl(S‐trifluoromethylsulfonylimino)sulfonyl)imide] (PSsTFSI?), and high‐molecular‐weight poly(ethylene oxide) (PEO). The neat LiPSsTFSI ionomer displays a low glass‐transition temperature (44.3 °C; that is, strongly plasticizing effect). The complex of LiPSsTFSI/PEO exhibits a high Li‐ion transference number (tLi+=0.91) and is thermally stable up to 300 °C. Meanwhile, it exhibits a Li‐ion conductivity as high as 1.35×10?4 S cm?1 at 90 °C, which is comparable to that for the classic ambipolar LiTFSI/PEO SPEs at the same temperature. These outstanding properties of the LiPSsTFSI/PEO blended polymer electrolyte would make it promising as solid polymer electrolytes for Li batteries.  相似文献   

18.
Polymeric solid electrolytes which show bi-or single-ionic tunneling were prepared, and their unique ion conduction was applied for the design of some devices. Poly [(oligooxyethylene) methacrylatel] /MX hybrids and poly [(oligooxyethylene) methacrylate-co-methacrylic acid alkali metal salts] were prepared as typical models of those tunneling systems. These showed ionic conductivities above 10?5 and 10?7 S/cm at room temperature, respectively. An all-solid-state electrochromic display and a dry battery were prepared with these polymeric solid electrolytes. The all-solid-state electrochromic display showed excellent coloring and bleaching response by 1–3 V. The all-solid-state battery showed V oc = 3.1 V stability for over 2 weeks. Their characteristics as well as their mechanism are also reported.  相似文献   

19.
Poly(acetyl ethylene oxide acrylate‐co‐vinyl acetate) (P(AEOA‐VAc)) was synthesized and used as a host for lithium perchlorate to prepare an all solid polymer electrolyte. Introduction of carbonyl groups into the copolymer increased ionic conductivity. All solid polymer electrolytes based on P(AEOA‐VAc) at 14.3 wt% VAc with 12wt% LiClO4 showed conductivity as high as 1.2 × 10?4 S cm?1 at room temperature. The temperature dependence of the ionic conductivity followed the VTF behavior, indicating that the ion transport was related to segmental movement of the polymer. FTIR was used to investigate the effect of the carbonyl group on ionic conductivity. The interaction between the lithium salt and carbonyl groups accelerated the dissociation of the lithium salt and thus resulted in a maximum ionic conductivity at a salt concentration higher than pure PAEO‐salts system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Novel soft‐segment ionic polyurethane (linear and crosslinking) have been prepared based up on sodium sulfonate–side chains poly(ethylene oxide) (SPEO). SPEO was synthesized by grafting the sodium sulfonate onto the chain of poly(ethylene oxide) with molecular weights of 400, 600, 800, and 1000. The SPEO and the ionic polyurethane were characterized by elemental analysis, 1H‐NMR, 13C‐NMR, gel permeation chromatography, and impedance analysis. The effect of plasticizer on the ionic conductivity of the polyurethane was also investigated. These solid polymer electrolytes possess a higher ionic conductivity (about 10−6 S/cm at room temperature) than the corresponding sulfonated hard‐segment polyurethane electrolytes. The presence of the hydroxyl group in the electrolyte tends to lower the ionic conductivity. Crosslinking of polyurethane results in the enhancement of the dimensional stability, while maintaining the same level of the ionic conductivity. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 837–845, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号