首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,2-Butadiene diluted with Ar was heated behind reflected shock waves over the temperature and the total density range of 1100–1600 K and 1.36 × 10?5 ? 1.75 × 10?5 mol/cm3. The major products were 1,3-butadiene, 1-butyne, 2-butyne, vinylacetylene, diacetylene, allene, propyne, C2H6, C2H4, CH4, and benzene, which were analyzed by gas chromatography. The UV kinetic absorption spectroscopy at 230 nm showed that 1,2-butadiene rapidly isomerizes to 1,3-butadiene from the initial stage of the reaction above 1200 K. In order to interpret the formation of 1,3-butadiene, 1-butyne, and 2-butyne, it was necessary to include the parallel isomerizations of 1,2-butadiene to these isomers. The present data were successfuly modeled with a 82 reaction mechanism. From the modeling, rate constant expressions were derived for the isomerization 1,2-butadiene = 1,3-butadiene to be k3 = 2.5 × 1013 exp(?63 kcal/RT) s?1 and for the decomposition 1,2-butadiene = C3H3 + CH3 to be k6 = 2.0 × 1015 exp(?75 kcal/RT) s?1, where the activation energies, 63 kcal/mol and 75 kcal/mol, were assumed. These rate constants are only applicable under the present experimental conditions, 1100–1600 K and 1.23–2.30 atm. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The thermal decomposition of propane was studied behind reflected shock waves over the temperature range 1100–1450 K and the pressure range 1.5–2.6 atm, by both monitoring the time variations of absorption at 3.39 μm and analyzing the concentrations of the reacted gas mixtures. The rate constants of the elementary reactions were discussed from the results. The rate constant expressions, k1 = 1.1 × 1016 exp (?84 kcal/RT) s?1 and k4 = 9.3 × 1013 exp(?8 kcal/RT) cm3 mol?1 s?1, of reactions C3H8 → CH3 + C2H5 and C3H8 + H → n-C3H7 + H2 were evaluated, respectively.  相似文献   

3.
Vinylacetylene was pyrolyzed at 300–450°C in a packed and an unpacked static reactor with a pinhole bleed to a quadrupole mass spectrometer. The reactant and C8H8 products were monitored continuously during a reaction by mass spectrometry. In some runs, the products were also analyzed by gas chromatography after the run. In these runs CH4, C2H6, C3H6, and C2H4 were also detected. The reaction for vinylacetylene removal and C8H8 formation is homogeneous, second order in reactant, and independent of the presence of a large excess of N2 or He. However, C8H8 formation is about half-suppressed by the addition of the free-radical scavengers NO or O2. The rate coefficient for total vinylacetylene removal is 1.7 × 106 exp(?79 ± 13 kJ/mol RT) L/mol · s. The major reaction for C4H4 removal is polymerization. In addition four C8H8 isomers, carbon, and small hydrocarbons are formed. The three major C8H8 isomers are styrene, cyclooctatetraene (COT), and 1,5? dihydropentalene (DHP). The C8H8 compounds are formed by both molecular and free-radical processes in a second-order process with an overall k ? 3 × 108 exp(?122 kJ/mol RT) L/mol · s (average of packed and unpacked cell results). The molecular process occurs with an overall k = 8.5 × 107 exp (?118 kJ/mol RT) L/mol · s. The COT, DHP, and an unidentified isomer (d), are formed exclusively in molecular processes with respective rate coefficients of 4.4 × 104 exp(?77 kJ/mol RT), 1.7 × 105 exp(?89 kJ/mol RT), and 3.1 × 109 exp(? 148 kJ/mol RT) L/mol · s. The styrene is formed both by a direct free-radical process and by isomerization of COT.  相似文献   

4.
The rates of relaxation of HCl(ν = 1) and DCl(ν = 1) by atomic oxygen have been determined between 196 and 400 K using the laser induced vibrational fluorescence method. The values of the rate constants, κ1,H and κ1,D, can be matched quite well by Arrhenius expressions: κ1,H = 6.2 × 10?12 exp (?1.05 kcal mole?1/RT) cm3 molecule?1 s?1 and κ1,D = 2.9 × 10?12 exp (?0.5 kcal mole?1/RT) cm3 molecule?1 s?1. The most likely explanation of the absolute and relative magnitudes of these rate constants appears to be that relaxation occurs as a result of non-adiabatic vibronic transitions during collisions.  相似文献   

5.
Reactions of ozone with simple olefins have been studied between 6 and 800 mtorr total pressure in a 220-m3 reactor. Rate constants for the removal of ozone by an excess of olefin in the presence of 150 mtorr oxygen were determined over the temperature range 280 to 360° K by continuous optical absorption measurements at 2537 Å. The technique was tested by measuring the rate constants k1 and k2 of the reactions (1) NO + O3 → NO2 + O2 and (2) NO2 + O3 rarr; NO3 + O2 which are known from the literature. The results for NO, NO2, C2H4, C3H6, 2-butene (mixture of the isomers), 1,3→butadiene, isobutene, and 1,1 -difluoro-ethylene are 1.7 × 10?1 4 (290°K), 3.24 × 10?17 (289°K), 1.2 × 10?1 4 exp (–4.95 ± 0.20/RT), 1.1 × 10?1 4 exp (–3.91 ± 0.20/RT), 0.94 × 10?1 4 exp ( –2.28 ± 0.15/RT), 5.45 ± 10?1 4 exp ( –5.33 ± 0.20/RT), 1.8 ×10?17 (283°K), and 8 × 10?20 cm3/molecule ·s(290°K). Productformation from the ozone–propylene reaction was studied by a mass spectrometric technique. The stoichiometry of the reaction is near unity in the presence of molecular oxygen.  相似文献   

6.
The decomposition of ethyl iodide and subsequent dissociation of ethyl radicals have been investigated behind incident shock waves in a diaphragmless shock tube by laser‐schlieren (LS) densitometry (1150–1870 K, 55 ± 2 Torr and 123 ± 3 Torr). The LS density‐gradient profiles were simulated assuming that the initial dissociation of C2H5I proceeded by 87% C–I fission and 13% HI elimination. Excellent agreement was found between the simulations and experimental profiles. Rate coefficients for the C–I scission reaction were obtained and show strong falloff. Gorin model RRKM (Rice, Ramsperger, Kassel, and Marcus) calculations are in excellent agreement with the experimental data with E0 = 55.0 kcal/mol, which is in very good agreement with recent thermochemical measurements and evaluations. However, E0 is approximately 2.7 kcal/mol higher than previous estimates. First‐order rate coefficients for dissociation of C2H5I were determined to be k55Torr = 8.65 × 1068 T?16.65 exp(?37,890/T) s?1, k123Torr = 3.01 × 1069 T?16.68 exp(?38,430/T) s?1, k = 2.52 × 1019 T?1.01 exp(?28,775/T) s?1. Rates of dissociation for ethyl radicals were also obtained, and these are in very good agreement with theoretical predictions (Miller J. A. and Klippenstein S. J. Phys Chem Chem Phys 2004, 6, 1192–1202). The simulations show that at low temperatures ethyl radicals are consumed through recombination reactions as well as dissociation, whereas at high temperatures, dissociation dominates. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 433–443, 2012  相似文献   

7.
Rate constants for the reaction of O(3P) atoms with C3H4, C3H6 and NO(M = N2O) have been measured over the temperature range 300–392°K using a modulation-phase shift technique. The Arrhenius expressions obtained are:C2H4, k2 = 3.37 × 109 exp[?(1270 ± 200)/RT]liter mole?1 sec?1,C3H6, k2 = 2.08 × 109 exp[?(0 ± 300)/RT]liter mole?1 sec?1,NO(M = N2O), k1 = 9.6 × 109 exp[(900 ± 200/RT]liter2 mole?2 sec?1.These temperature dependencies of k2 are in good agreement with recent flash photolysis-resonance flourescence measurements, although lower than previous literature values.  相似文献   

8.
The thermal decomposition of CCl3O2NO2,CCl2FO2NO2, and CClF2O2NO2 was studied in a temperature-controlled 420 l reaction chamber using in situ detection of peroxynitrates by long-path IR absorption. The temperature dependence of the unimolecular dissociation rate constants was determined at total pressures of 10 and 800 mbar in nitrogen as buffer gas, and the pressure dependence was measured at 273 K between 10 and 800 mbar. In Troe's notation, the data are represented by the following values for the limiting low and high pressure rate constants k0/[N2] and k and the fall-off curvature parameter Fc (in units of cm3 molecule?1 s?1, s?1): CCl3O2NO2,k0/[N2] = 6.3 × 10?3 exp(?85.1 kJ · mol?1/RT), k = 4.8 × 1016 exp(?98.3 kJ · mol?1/RT), Fc = 0.22; CCl2FO2NO2, k0/[N2] = 1.01× 10?2 exp(?90.3 kJ · mol?1/RT), k = 6.6 × 1016 exp(?101.8 kJ · mol?1/RT), Fc = 0.28; and CClF2O2NO2, k0/[N2] = 1.80 × 10?3 exp(?87.3 kJ · mol?1/RT), k = 1.60 × 1016exp(?99.7 kJ · mol?1/RT), Fc = 0.30. From these dissociation rate constants and recently measured rate constants for the reverse reaction (see Caralp, Lesclaux, Rayez, Rayez, and Forst [19]), bond energies (=ΔH) of 100, 103, and 104 kJ/mol were derived for the RO2–NO2 bonds in CCl3O2NO2, CCl2FO2NO2, and CClF2O2NO2, respectively. The kinetic and thermochemical parameters of these decomposition reactions are compared with those of the dissociation of other peroxynitrates. Atmospheric implications of the thermal stability of chlorofluoromethyl peroxynitrates are briefly discussed.  相似文献   

9.
The reactions of ground-state oxygen atoms with carbonothioicdichloride, carbonothioicdifluoride, and tetrafluoro-1,3-dithietane have been studied in a crossed molecular jet reactor in order to determine the initial reaction products and in a fast-flow reactor in order to determine their overall rate constants at temperatures between 250 and 500 K. These rate constants are??(O + C2CS) =(3.09 ± 0.54) × 10?11 exp(+115 ± 106 cal/mol/RT),??(O + F2CS) = (1.22 ± 0.19) × 10?11 exp(-747 ± 95 cal/mol/RT), and??(O + F4C2S2) = (2.36 ± 0.52) × 10?11 exp(-1700 ± 128 cal/mol/RT) cm3/molec˙sec. The detected reaction products and their rate constants indicate that the primary reaction mechanism is the electrophilic addition of the oxygen atom to the sulfur atom contained in the reactant molecule to form an energy-rich adduct which then decomposes by C-S bond cleavage.  相似文献   

10.
Thermal decomposition of cyclopentadiene to c‐C5H5 (cyclopentadienyl radical) + H (1) and the reverse bimolecular reaction (?1) are studied quantum‐chemically at the G2M level of theory. The dissociation pathway has been mapped out following the minimum energy path on the potential energy surface (PES) calculated by the density functional UB3LYP/6‐311G(d,p) method. Using isodesmic reaction analysis, the standard enthalpy of formation for c‐C5H5 is found to be 62.5 ± 1.3 kcal mol?1, and the c‐C5H5? H bond dissociation energy is estimated as D°298(c‐C5H5? H) = 82.5 ± 0.9 kcal mol?1, in excellent agreement with the recent experimental values. Variational rate constants are computed on the basis of a scaled UB3LYP dissociation potential that fits the isodesmic/experimental enthalpy of Reaction (1). At the high pressure limit, k1 = 1.55 × 1018 T?0.8 exp(?42300/T) s?1 and k?1 = 2.67 × 1014 exp(?245/T) cm3 mol?1 s?1. The fall‐off effects are evaluated by a weak collision master equation/RRKM analysis. Calculated T, P‐dependent rate constants are in very good agreement with the most reliable experimental measurements. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 139–151 2004  相似文献   

11.
The kinetic model of induced codeposition of nickel-molybdenum alloys from ammoniun citrate solution was studied on rotating disk electrodes to predict the behavior of the electrode-position. The molybdate (MoO42-) could be firstly electro-chemically reduced to MoO2, and subsequently undergoes a chemical reduction with atomic hydrogen previously adsorbed on the inducing metal nickel to form molybdenum in alloys. The kinetic equations were derived, and the kinetic parameters were obtained from a comparison of experimental results and the kinetic equations. The electrochemical rate constants for discharge of nickel, molybdenum and water could been expressed as k1(E) = 1. 23 × 109 CNi exp( - 0.198FE/RT) mol/(dm2·s), k2(E) =3.28× 10-10 CMoexp( - 0. 208FE/ RT) mol/(dm2·s) and k3(E) = 1.27 × 10-6exp( - 0.062FE/ RT) mol/(dm2 · s), where CNi and CMo are the concentrations of the nickel ion and molybdate, respectively, and E is the applied potential vs. saturated calomel electrode (SCE). The codeposition p  相似文献   

12.
Absolute rate constants are measured for the reactions: OH + CH2O, over the temperature range 296–576 K and for OH + 1,3,5-trioxane over the range 292–597 K. The technique employed is laser photolysis of H2O2 or HNO3 to produce OH, and laser-induced fluorescence to directly monitor the relative OH concentration. The results fit the following Arrhenius equations: k (CH2O) = (1.66 ± 0.20) × 10?11 exp[?(170 ± 80)/RT] cm3 s?1 and k(1,3,5-trioxane) = (1.36 ± 0.20) × 10?11 exp[?(460 ± 100)/RT] cm3 s?1. The transition-state theory is employed to model the OH + CH2O reaction and extrapolate into the combustion regime. The calculated result covering 300 to 2500 K can be represented by the equation: k(CH2O) = 1.2 × 10?18 T2.46 exp(970/RT) cm3 s?1. An estimate of 91 ± 2 kcal/mol is obtained for the first C? H bond in 1,3,5-trioxane by using a correlation of C? H bond strength with measured activation energies.  相似文献   

13.
Gas-phase reactions typical of the Earth’s atmosphere have been studied for a number of partially fluorinated alcohols (PFAs). The rate constants of the reactions of CF3CH2OH, CH2FCH2OH, and CHF2CH2OH with fluorine atoms have been determined by the relative measurement method. The rate constant for CF3CH2OH has been measured in the temperature range 258–358 K (k = (3.4 ± 2.0) × 1013exp(?E/RT) cm3 mol?1 s?1, where E = ?(1.5 ± 1.3) kJ/mol). The rate constants for CH2FCH2OH and CHF2CH2OH have been determined at room temperature to be (8.3 ± 2.9) × 1013 (T = 295 K) and (6.4 ± 0.6) × 1013 (T = 296 K) cm3 mol?1 s?1, respectively. The rate constants of the reactions between dioxygen and primary radicals resulting from PFA + F reactions have been determined by the relative measurement method. The reaction between O2 and the radicals of the general formula C2H2F3O (CF3CH2? and CF3?HOH) have been investigated in the temperature range 258–358 K to obtain k = (3.8 ± 2.0) × 108exp(?E/RT) cm3 mol?1 s?1, where E = ?(10.2 ± 1.5) kJ/mol. For the reaction between O2 and the radicals of the general formula C2H4FO (? HFCH2O, CH2F?HOH, and CH2FCH2?) at T = 258–358 K, k = (1.3 ± 0.6) × 1011exp(?E/RT) cm3 mol?1 s?1, where E = ?(5.3 ± 1.4) kJ/mol. The rate constant of the reaction between O2 and the radicals with the general formula C2H3F2O (?F2CH2O, CHF2?HOH, and CHF2CH2?) at T = 300 K is k = 1.32 × 1011 cm3 mol?1 s?1. For the reaction between NO and the primary radicals with the general formula C2H2F3O (CF3CH2? and CF3?HOH), which result from the reaction CF3CH2OH + F, the rate constant at 298 K is k = 9.7 × 109 cm3 mol?1 s?1. The experiments were carried out in a flow reactor, and the reaction mixture was analyzed mass-spectrometrically. A mechanism based on the results of our studies and on the literature data has been suggested for the atmospheric degradation of PFAs.  相似文献   

14.
1,5-cyclooctadiene or 4-vinylcyclohexene mixture diluted with argon was heated to temperatures in the range 880–1230 K behind reflected shock waves. Profiles of IR-laser absorption were measured at 3.39 μm. From these profiles, rate constants k1 and k2 for the decyclization reactions 1,5-cyclooctadiene → biradical and 4-vinylcyclohexene → biradical were evaluated as k1 = 5.2 × 1014 exp(?48.3 kcal/RT) s?1 and k2 = 3.5 × 1014 exp(?55.3 kcal/RT) s?1, respectively. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Rate constants for the two stages of germane dissociation (GeH4 → GeH2 + H2(I) and GeH2 → Ge + H2(II) have been derived from the studies of the chemiluminescence kinetics during germane dissociation in the presence of nitrous oxide behind shock waves at 1060–1300 K and the full density equal to ~10?5 mol/cm3. Analysis in terms of the RRKM model gave the following expressions for the rate constants of these reactions in the high and low pressure limits: k 1, ∞ = 2.0 × 1014exp(?208.0/RT) s?1; k 1, 0 = 1.7 × 1018(1000/T)3.85exp(?208.0/RT) cm3/(mol s); and k 2, 0 = 2.8 × 1015(1000/T)1.32exp(?135.0/RT) cm3/(mol s). The results, in combination with the available enthalpies of formation of radical GeH2, show that the back reaction for stage (I) has an energy barrier of about 66 kJ/mol.  相似文献   

16.
Measurements of the NO-catalyzed dissociation of I2 in Ar in incident shock waves were carried out in the temperature range of 700°-1520°K and at total concentrations of 5 × 10?6-6 × 10?5 mol/cm3, using ultraviolet-visible absorption techniques to monitor the disappearance of I2. It was shown that the main reaction responsible for the disappearance under these conditions is I2 + NO → INO + I, for which a rate coefficient of (2.9 ± 0.5) × 1013 exp[-(18.0 ± 0.6 kcal/mol)/RT] cm2/mol·sec was determined. The INO formed dissociates rapidly in a subsequent reaction. The reaction, therefore, constitutes a “chemical model” for a “thermal collisional release mechanism.” Preliminary measurements of the rate coefficient for I2 + NO2 → INO2 + I are also presented. Combined with information on the reverse reactions obtained in earlier room temperature experiments, these results lead to accurate values of ΔH°f for INO and INO2 equal to 29.7 ± 0.5 and 15.9 ± 1 kcal/mol, respectively.  相似文献   

17.
The pyrolysis of 2% CH4 and 5% CH4 diluted with Ar was studied using both a single–pulse and time–resolved spectroscopic methods over the temperature range 1400–2200 K and pressure range 2.3–3.7 atm. The rate constant expressions for dissociative recombination reactions of methyl radicals, CH3 + CH3 → C2H5 + H and CH3 + CH3 → C2H4 + H2, and for C3H4 formation reaction were investigated. The simulation results required considerably lower value than that reported for CH3 + CH3 → C2H4 + H2. Propyne formation was interpreted well by reaction C2H2 + CH3P-C3H4 + H with ?? = 6.2 × 1012 exp(?17 kcal/RT) cm3 mol?1 s?1.  相似文献   

18.
CF3ClH2 mixtures highly diluted with Ar were heated to 1400–1600 K behind reflected shock waves. The HCl emission was followed in order to determine the rate constant (k1) of the reaction, CF3Cl + M  CF3 + Cl + M, and k1 = 2.1 × 1017 exp(?75000/RT) cm3 mol?1 s?1 was computed.  相似文献   

19.
CF3Br? H2 mixtures highly diluted with Ar were studied by using a time-resolved IR-emission of HBr and a gas-chromatography for reaction products. The temperature range covered was 1000–1600 K and the total pressure behind the reflected shock waves used was 1.2–2.6 atm. CF3H, C2F6, and C2F4 were produced and the yields of these products were determined as a function of temperature. The main product under our experimental conditions was CF3H. The mechanism and the rate constants of CF3Br? H2 reaction at high temperatures were discussed. The experimental data was satisfactorily modeled using a 14-reaction mechanism. Reaction (5) played an important role in the formation of CF3H together with reaction (4). The rate constant expression k5 = 2.2 × 1013 exp(?12 kcal/RT) cm3 mol?1 s?1 gave the best agreement between the calculated and observed results. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Dissociation rates of SO2 in SO2 + Ar mixtures at 6%, 11%, 15% and 20% of SO2 were measured behind incident shock waves over a temperature range 4000–6000 K at initial pressures 1.0 to 2.5 Torr. The recorded laser schlieren signals exhibited two exponentials, the faster one due to vibrational relaxation and the slower one due to dissociation. The initial dissociation rate was calculated from the value of the density gradient at the point of intersection of the two exponentials. A least-squares analysis of the experimental data yielded the following empirical relations: kSO2Ar = 3.34 × 1015 exp(?107.6 kcal mole?1/RT) cm3/mole s, kSO2SO2 = 5.02 × 1014 exp(?66.6 kcal mole?1 kcal mole?1/RT) cm3/mole s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号