首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ethyl tertiary butyl ether (ETBE) is being proposed as an additive for use in reformulated gasolines. In this study, experiments were performed to examine the kinetics and mechanism of the atmospheric removal of ETBE. The kinetics of the reaction of ETBE with OH radicals were examined by using a relative rate technique with the photolysis of methyl nitrite to generate OH radicals. With n-hexane as the reference compound, a value of (9.73 ± 0.33) × 10?12 cm3 molecule?1 s?1 was obtained for the rate constant. The OH rate constant for t-butyl acetate, a product of the oxidation of ETBE, was (4.4 ± 0.4) × 10?13 cm3 molecule?1 s?1 at 298 K. The primary products and molar yields for the OH reaction with ETBE in the presence of NOx were t-butyl formate (0.64 ± 0.03), t-butyl acetate (0.13 ± 0.01), ethyl acetate (0.043 ± 0.003), acetaldehyde (0.16 ± 0.01), acetone (0.019 ± 0.002), and formaldehyde (0.53 ± 0.04). Under the described reaction conditions, the formation of t-butyl nitrite was also observed. From these molar yields, approximately 98% of the reacted ETBE could be accounted for by paths leading to these products. Chemical mechanisms to explain the formation of these products are presented.  相似文献   

2.
Methyl tertiary butyl ether (MTBE) has been proposed and is being used as an additive to increase the octane of gasoline without the use of tetraethyl lead and alkylbenzenes. The present experiments have been performed to examine the kinetics and mechanisms of the atmospheric removal of MTBE. The kinetics of the reaction of OH with MTBE was examined by using a relative rate technique in which photolysis of methyl nitrite was used as the source of OH. With n-butane as the reference compound a value of (2.99 ± 0.12) × 10?12 cm3 molecule?1 s?1 at a temperature of 298 K was obtained for the rate constant. The products (and product yields) for the OH reaction with MTBE in the presence of NOx were also determined and found to be t-butyl formate (0.68 ± 0.05), methyl acetate (0.14 ± 0.02), acetone (0.026 ± 0.003), t-butanol (0.062 ± 0.009), and formaldehyde (0.48 ± 0.05) in mols/mol MTBE converted. The OH rate constant for the major product formed, t-butyl formate was also measured and found to be (7.37 ± 0.05) × 10?13 cm3 molecule?1 s?1. Mechanisms to rationalize the formation of the products are presented.  相似文献   

3.
The kinetics of the reaction of OH radicals with t-amyl methyl ether (TAME) have been reinvestigated using both absolute (flash photolysis resonance fluorescence) and relative rate techniques. Relative rate experiments were conducted at 295 K in 99 kPa (740 torr) of synthetic air using ethyl t-butyl ether, cyclohexane, and di-isopropyl ether as reference compounds. Absolute rate experiments were performed over the temperature range 240–400 K at a total pressure of 4.7 kPa (35 torr) of argon. Rate constant determinations from both techniques are in good agreement and can be represented by k1=(6.32 ± 0.72) × 10?12 exp[(?40 ± 70)/T] cm3 molecule?1 s?1. Quoted errors represent 2σ from the least squares analysis and do not include any estimate of systematic errors. We show that results from the previous kinetic study of reaction (1) are in error due to the presence of a reactive impurity. Results are discussed in terms of the atmospheric chemistry of TAME. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
The kinetics and mechanism of gas‐phase propylene oxide (PPO) reactions were studied in a 142‐L reaction chamber by long‐path Fourier transform infrared spectroscopy at atmospheric pressure and 298 K. Rate coefficients for the reaction of PPO with ozone (O3), chlorine atoms (Cl), and hydroxyl radicals (OH) were measured using the relative rate technique. Product yields of acetic acid, acetic formic anhydride, formic acid, and carbon monoxide were determined for the following reactions: PPO with Cl both in the presence and absence of NO, PPO with OH and NO, methyl acetate with Cl both in the presence and absence of NO, and ethyl formate with Cl both in the presence and absence of NO. The measured rate coefficients for PPO with O3, Cl, and OH are <3.5 × 10?21 cm3 molecule?1 s?1, (3.0 ± 0.7) × 10?11 cm3 molecule?1 s?1, and (3.0 ± 1.0) × 10?13 cm3 molecule?1 s?1, respectively. The carbon balance for the products measured ranged from 10% (for OH + PPO) to 100% (for Cl + methyl acetate in the absence of NO). The mechanistic and atmospheric implications of these measurements are discussed. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 507–521, 2011  相似文献   

5.
Formates are produced in the atmosphere as a result of the oxidation of a number of species, notably dialkyl ethers and vinyl ethers. This work describes experiments to define the oxidation mechanisms of isopropyl formate, HC(O)OCH(CH3)2, and tert‐butyl formate, HC(O)OC(CH3)3. Product distributions are reported from both Cl‐ and OH‐initiated oxidation, and reaction mechanisms are proposed to account for the observed products. The proposed mechanisms include examples of the α‐ester rearrangement reaction, novel isomerization pathways, and chemically activated intermediates. The atmospheric oxidation of isopropyl formate by OH radicals gives the following products (molar yields): acetic formic anhydride (43%), acetone (43%), and HCOOH (15–20%). The OH radical initiated oxidation of tert‐butyl formate gives acetone, formaldehyde, and CO2 as major products. IR absorption cross sections were derived for two acylperoxy nitrates derived from the title compounds. Rate coefficients are derived for the kinetics of the reactions of isopropyl formate with OH (2.4 ± 0.6) × 10?12, and with Cl (1.75 ± 0.35) × 10?11, and for tert‐butyl formate with Cl (1.45 ± 0.30) × 10?11 cm3 molecule?1 s?1. Simple group additivity rules fail to explain the observed distribution of sites of H‐atom abstraction for simple formates. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 479–498, 2010  相似文献   

6.
The rate of the gas phase reaction of hydroxyl radical with methyl nitrate has been measured to be (3.4 ± 0.4) × 10?14 cm3 molecule?1 s?1 at 298 K using flow discharge/ resonance fluorescence techniques. By means of correlation methods, this rate determination is used to predict a vertical ionization potential of 12.6 eV, a bond dissociation energy for H? CH2ONO2 of 101 kcal mol?1, and a rate for O(3P) reaction with methyl nitrate of ca. 9 × 10?17 cm3 molecule?1 s?1. In conjunction with previously derived relative data for reaction of alkyl nitrates with OH radical in the gas phase, a priori estimated reactivities for 1-, 2-, and 3-positionally substituted straight chain alkyl nitrates have been reexamined. Revised reactivities for OH abstraction of specific hydrogens substituted on straight chain alkyl nitrates are presented and discussed, and an atmospheric lifetime of ca. 2 yrs is estimated for methyl nitrate removal due to OH.  相似文献   

7.
The gas phase reaction of the hydroxyl radical with the unsaturated peroxyacyl nitrate CH2 ? C(CH3)C(O)OONO2 (MPAN) has been studied at 298 ± 2 K and atmospheric pressure. The OH-MPAN reaction rate constant relative to that of OH + n-butyl nitrate is 2.08 ± 0.25. This ratio, together with a literature rate constant of 1.74 × 10?12 cm3 molecule?1 s?1 for the OH + n-butyl nitrate reaction at 298 K, yields a rate constant of (3.6 ± 0.4)× 10?12 cm3 molecule?1 s?1 for the OH-MPAN reaction at 298 ± 2 K. Hydroxyacetone and formaldehyde are the major carbonyl products. The yield of hydroxyacetone, 0.59 ± 0.12, is consistent with preferential addition of OH at the unsubstituted carbon atom. Atmospheric persistence and removal processes for MPAN are briefly discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
The products of the reaction of the hydroxyl (OH) radical with methyl tert-butyl ether (MTBE) in NOx-air systems were identified and measured by Fourier transform infrared absorption spectroscopy and gas chromatography. The products observed, and their yields, were as follows: t-butyl formate, 76 ± 7%; formaldehyde, 37%; methyl acetate, 17 ± 2%, and acetone, 2.1 ± 0.9%, where the stated error limits represent both random (two standard deviations) and estimated systematic uncertainties. These products account for ca. 95% of the MTBE carbon reacted. Infrared absorption bands which may be due to small amounts of organic nitrate formation were observed, but organic nitrate yields could not be quantified. These data allow a chemical mechanism for the reaction of MTBE with the OH radical in the presence of NOx to be formulated.  相似文献   

9.
Previous studies have shown a significant OH yield from the reaction of RCO radicals (generated from the photolysis of corresponding ketone) with oxygen below total pressures of 200 Torr. The potential of these reactions as a source of OH radicals for flash photolytic kinetic studies is investigated. The viability of the method was tested by measuring rate coefficients for the reaction of OH with ethanol using both acetone/O2 mixtures and t‐butyl hydroperoxide photolysis. The results (with statistical errors at the 2σ level) are in excellent agreement with each other (kEtOH(acetone) = (5.87 ± 0.34) × 10?18 T2 exp((515 ± 21)K/T) cm3 molecule?1 s?1 and kEtOH (t‐butyl hydroperoxide) = (5.27 ± 0.34) × 10?18 T2 exp((557 ± 20)K/T) cm3 molecule?1 s?1) and with the IUPAC recommendation. The reaction of OH with methyl ethyl ketone (2‐butanone) has also been investigated using a similar technique. The results show a strong non‐Arrhenius temperature dependence, k = (3.84 ± 0.12) × 10?24× T4 × exp((1038 ± 11)/t). The merits of the ketone/oxygen OH source are contrasted with other established precursors. A major advantage of the technique is the ability to cleanly generate OD without the potential for isotopic scrambling prior to photolysis. © 2008 Wiley Periodicals, Inc. 40: 504–514, 2008  相似文献   

10.
The products of the gas‐phase reactions of OH radicals with 1‐pentene and 2‐methyl‐2‐propen‐1‐ol (221MPO) at T=298±2 K and atmospheric pressure were investigated by using a 4500 L atmospheric simulation chamber that was built especially for this work. The molar yield of butyraldehyde was 0.74±0.12 mol for the reaction of 1‐pentene. This work provides the first product molar yield determination of formaldehyde (0.82±0.12 mol), 1‐hydroxypropan‐2‐one (0.84±0.13 mol), and methacrolein (0.078±0.012 mol) from the reaction of 221MPO with OH radicals. The mechanism of this reaction is discussed in relation to the experimental results. Additionally, taking into consideration the complex mechanism, the rate coefficients of the reactions of OH with formaldehyde, 1‐hydroxypropan‐2‐one, and methacrolein were derived at atmospheric pressure and T=298±2 K.; the obtained values were (8.9±1.6)×10?12, (2.4±1.4)×10?12, and (22.9±2.3)×10?12 cm3 molecule?1 s?1, respectively.  相似文献   

11.
A bimolecular rate constant,kDHO, of (29 ± 9) × 10?12 cm3 molecule?1 s?1 was measured using the relative rate technique for the reaction of the hydroxyl radical (OH) with 3,5‐dimethyl‐1‐hexyn‐3‐ol (DHO, HC?CC(OH)(CH3)CH2CH(CH3)2) at (297 ± 3) K and 1 atm total pressure. To more clearly define DHO's indoor environment degradation mechanism, the products of the DHO + OH reaction were also investigated. The positively identified DHO/OH reaction products were acetone ((CH3)2C?O), 3‐butyne‐2‐one (3B2O, HC?CC(?O)(CH3)), 2‐methyl‐propanal (2MP, H(O?)CCH(CH3)2), 4‐methyl‐2‐pentanone (MIBK, CH3C(?O)CH2CH(CH3)2), ethanedial (GLY, HC(?O)C(?O)H), 2‐oxopropanal (MGLY, CH3C(?O)C(?O)H), and 2,3‐butanedione (23BD, CH3C(?O)C(?O)CH3). The yields of 3B2O and MIBK from the DHO/OH reaction were (8.4 ± 0.3) and (26 ± 2)%, respectively. The use of derivatizing agents O‐(2,3,4,5,6‐pentalfluorobenzyl)hydroxylamine (PFBHA) and N,O‐bis(trimethylsilyl)trifluoroacetamide (BSTFA) clearly indicated that several other reaction products were formed. The elucidation of these other reaction products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible DHO/OH reaction mechanisms based on previously published volatile organic compound/OH gas‐phase reaction mechanisms. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 534–544, 2004  相似文献   

12.
Relative rate constants for the gas-phase reactions of OH radicals with a series of alkyl nitrates have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with cyclohexane of 7.57 × 10?12 cm3/molec·s, the rate constants obtained are (× 1012 cm3/molec·s): 2-propyl nitrate, 0.18 ± 0.05; 1-butyl nitrate, 1.42 ± 0.11; 2-butyl nitrate, 0.69 ± 0.10; 2-pentyl nitrate, 1.87 ± 0.12; 3-pentyl nitrate, 1.13 ± 0.20; 2-hexyl nitrate, 3.19 ± 0.16; 3-hexyl nitrate, 2.72 ± 0.22; 3-heptyl nitrate, 3.72 ± 0.43; and 3-octyl nitrate, 3.91 ± 0.80. These rate constants, which are the first reported for the alkyl nitrates, are significantly lower than those for the parent alkanes, and a formula, based on the numbers of the various types of C? H bonds in the alkyl nitrates, is derived for rate constant estimation purposes.  相似文献   

13.
The yields of C5 and C6 alkyl nitrates from neopentane, 2-methylbutane, 2-methylpentane, 3-methylpentane, and cyclohexane have been measured in irradiated CH3ONONO-alkane-air mixtures at 298 ± 2 K and 735-torr total pressure. Additionally, OH radical rate constants for neopentyl nitrate, 3-nitro-2-methylbutane, 2-nitro-2-methylpentane, 2-nitro-3-methylpentane, and cyclohexyl nitrate, relative to that for n-butane, have been determined at 298 ± 2 K. Using a rate constant for the reaction of OH radicals with n-butane of 2.58 × 10?12 cm3 molecule?1 s?1, these OH radical rate constants are (in units of 10?12 cm3 molecule?1 s?1): neopentyl nitrate, 0.87 ± 0.21; cyclohexyl nitrate, 3.35 ± 0.36; 3-nitro-2-methylbutane, 1.75 ± 0.06; 2-nitro-2-methylpentane, 1.75 ± 0.22; and 2-nitro-3-methylpentane, 3.07 ± 0.08. After accounting for consumption of the alkyl nitrates by OH radical reaction and for the yields of the individual alkyl peroxy radicals formed in the reaction of OH radicals with the alkanes studied, the alkyl nitrate yields (which reflect the fraction of the individual RO2 radicals reacting with NO to form RONO2) determined were: neopentyl nitrate, 0.0513 ± 0.0053; cyclohexyl nitrate, 0.160 ± 0.015; 3-nitro-2-methylbutane, 0.109 ± 0.003; 2-nitro-2methylbutane, 0.0533 ± 0.0022; 2-nitro-2-methylpentane, 0.0350 ± 0.0096; 3- + 4-nitro-2-methylpentane, 0.165 ± 0.016; and 2-nitro-3-methylpentane, 0.140 ± 0.014. These results are discussed and compared with previous literature values for the alkyl nitrates formed from primary and secondary alkyl peroxy radicals generated from a series of n-alkanes.  相似文献   

14.
Relative rate coefficients for the reactions of OH with 3‐methyl‐2‐cyclohexen‐1‐one and 3,5,5‐trimethyl‐2‐cyclohexen‐1‐one have been determined at 298 K and atmospheric pressure by the relative rate technique. OH radicals were generated by the photolysis of methyl nitrite in synthetic air mixtures containing ppm levels of nitric oxide together with the test and reference substrates. The concentrations of the test and reference substrates were followed by gas chromatography. Based on the value k(OH + cyclohexene) = (6.77 ± 1.35) × 10?11 cm3 molecule?1 s?1, rate coefficients for k(OH + 3‐methyl‐2‐cyclohexen‐1‐one) = (3.1 ± 1.0) × 10?11 and k(OH + 3,5,5‐trimethyl‐2‐cyclohexen‐1‐one) = (2.4 ± 0.7) × 10?11 cm3 molecule?1 s?1 were determined. To test the system we also measured k(OH + isoprene) = (1.11 ± 0.23) × 10?10 cm3 molecule?1 s?1, relative to the value k(OH + (E)‐2‐butene) = (6.4 ± 1.28) × 10?11 cm3 molecule?1 s?1. The results are discussed in terms of structure–activity relationships, and the reactivities of cyclic ketones formed in the photo‐oxidation of monoterpene are estimated. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 7–11, 2002  相似文献   

15.
Rate constants for the gas-phase reactions of the four oxygenated biogenic organic compounds cis-3-hexen-1-ol, cis-3-hexenylacetate, trans-2-hexenal, and linalool with OH radicals, NO3 radicals, and O3 have been determined at 296 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained were (in cm3 molecule?1 s?1 units): cis-3-hexen-1-ol: (1.08 ± 0.22) × 10?10 for reaction with the OH radical; (2.72 ± 0.83) × 10?13 for reaction with the NO3 radical; and (6.4 ± 1.7) × 10?17 for reaction with O3; cis-3-hexenylacetate: (7.84 ± 1.64) × 10?11 for reaction with the OH radical; (2.46 ± 0.75) × 10?13 for reaction with the NO3 radical; and (5.4 ± 1.4) × 10?17 for reaction with O3; trans-2-hexenal: (4.41 ± 0.94) × 10?11 for reaction with the OH radical; (1.21 ± 0.44) × 10?14 for reaction with the NO3 radical; and (2.0 ± 1.0) × 10?18 for reaction with O3; and linalool: (1.59 ± 0.40) × 10?10 for reaction with the OH radical; (1.12 ± 0.40) × 10?11 for reaction with the NO3 radical; and (4.3 ± 1.6) × 10?16 for reaction with O3. Combining these rate constants with estimated ambient tropospheric concentrations of OH radicals, NO3 radicals, and O3 results in calculated tropospheric lifetimes of these oxygenated organic compounds of a few hours. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
The relative OH reaction rates from the simulated atmospheric oxidation of 4-methyl-2-pentanone, trans-4-octene, and trans-2-heptene have been measured. Reactions were carried out at 297 ± 2 K in 100-liter FEP Teflon®-film bags. The OH radicals were produced from the photolysis of methyl nitrite. The measured rate constants (×1011 cm3 molecule?1 s?1) were as follows: 6.77 ± 0.50 for trans-4-octene, 1.40 ± 0.07 for 4-methyl-2-pentanone, and 6.70 ± 0.23 for trans-2-heptene using an absolute rate constant of 2.63 × 1011 cm3 molecule?1 s?1 for the reaction of OH with propene; the principal reference organic. © John Wiley & Sons, Inc.  相似文献   

17.
The kinetics of the gas-phase reactions of allyl chloride and benzyl chloride with the OH radical and O3 were investigated at 298 ± 2 K and atmospheric pressure. Direct measurements of the rate constants for reactions with ozone yielded values of ??(O3 + allyl chloride) = (1.60 ± 0.18) × 10?18 cm3 molecule?1 s?1 and ??(O3 + benzyl chloride) < 6 × 10?20 cm3 molecule?1 s?1. With the use of a relative rate technique and ethane as a scavenger of chlorine atoms produced in the OH radical reactions, rate constants of ??(OH + allyl chloride) = (1.69 ± 0.07) × 10?11 cm3 molecule?1 s?1 and ??(OH + benzyl chloride) = (2.80 ± 0.19) × 10?12 cm3 molecule?1 s?1 were measured. A study of the OH radical reaction with allyl chloride by long pathlength FT-IR absorption spectroscopy indicated that the co-products ClCH2CHO and HCHO account for ca. 44% of the reaction, and along with the other products HOCH2CHO, (ClCH2)2CO, and CH2 ? CHCHO account for 84 ± 16% of the allyl chloride reacting. The data indicate that in one atmosphere of air in the presence of NO the chloroalkoxy radical formed following OH radical addition to the terminal carbon atom of the double bond decomposes to yield HOCH2CHO and the CH2Cl radical, which becomes a significant source of the Cl atoms involved in secondary reactions. A product study of the OH radical reaction with benzyl chloride identified only benzaldehyde and peroxybenzoyl nitrate in low yields (ca. 8% and ?4%, respectively), with the remainder of the products being unidentified.  相似文献   

18.
A study was conducted to measure the hydroxyl radical rate constants using a relative rate procedure in which the photolysis of methyl nitrite was the source of OH. During the course of this study, the OH rate constant was measured for a number of chlorinated solvents for which measurements have not previously been reported or for which there are few reliable measurements. Room temperature OH rate constants are presented for six chlorinated hydrocarbons (allyl chloride, benzyl chloride, chlorobenzene, epichlorohydrin, trichloroethylene, and vinylidene chloride) and four oxygenated hydrocarbons (acrolein, methacrolein, methyl ethyl ketone, and propylene oxide). Also included are OH rate constants for alkanes (ethane, propane, isobutane, and cyclohexane), alkenes (trans?2-butene and isoprene), and aromatic hydrocarbons (benzene, toluene, o?, m?, and p-xylene). Rate constants for compounds not previously reported include vinylidene chloride (1.49 ± 0.21 × 10?11 cm3 molecule?1 s?1) and benzyl chloride (2.96 ± 0.15 × 10?12 cm3 molecule?1 s?1). The analysis for chlorinated hydrocarbons included a correction for possible chlorine atom reactions.  相似文献   

19.
Rate constants have been measured at 296 ± 2 K for the gas‐phase reactions of camphor with OH radicals, NO3 radicals, and O3. Using relative rate methods, the rate constants for the OH radical and NO3 radical reactions were (4.6 ± 1.2) × 10−12 cm3 molecule−1 s−1 and <3 × 10−16 cm3 molecule−1 s−1, respectively, where the indicated error in the OH radical reaction rate constant includes the estimated overall uncertainty in the rate constant for the reference compound. An upper limit to the rate constant for the O3 reaction of <7 × 10−20 cm3 molecule−1 s−1 was also determined. The dominant tropospheric loss process for camphor is calculated to be by reaction with the OH radical. Acetone was identified and quantified as a product of the OH radical reaction by gas chromatography, with a formation yield of 0.29 ± 0.04. In situ atmospheric pressure ionization tandem mass spectrometry (API‐MS) analyses indicated the formation of additional products of molecular weight 166 (dicarbonyl), 182 (hydroxydicarbonyl), 186, 187, 213 (carbonyl‐nitrate), 229 (hydroxycarbonyl‐nitrate), and 243. A reaction mechanism leading to the formation of acetone is presented, as are pathways for the formation of several of the additional products observed by API‐MS. © 2000 John Wiley and Sons, Inc. Int J Chem Kinet 33: 56–63, 2001  相似文献   

20.
Smog chamber relative rate techniques were used to measure rate coefficients of (5.00 ± 0.54) × 10?11, (5.87 ± 0.63) × 10?11, and (6.49 ± 0.82) × 10?11 cm3 molecule?1 s?1 in 700 Torr air at 296 ± 1 K for reactions of OH radicals with allyl alcohol, 1‐buten‐3‐ol, and 2‐methyl‐3‐buten‐2‐ol, respectively; the quoted uncertainties encompass the extremes of determinations using two different reference compounds. The OH‐initiated oxidation of allyl alcohol in the presence of NOx gives glycolaldehyde in a molar yield of 0.85 ± 0.08; the quoted uncertainty is two standard deviations. Oxidation of 2‐methyl‐3‐buten‐2‐ol gives acetone and glycolaldehyde in molar yields of 0.66 ± 0.06 and 0.56 ± 0.05, respectively. The reaction of OH radicals with allyl alcohol, 1‐buten‐3‐ol, and 2‐methyl‐3‐buten‐2‐ol proceeds predominately via addition to the >C?CH2 double bond with most of the addition occurring to the terminal carbon. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 151–158, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号