首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Ternary Halides of the A3MX6 Type. II. The System Ag3?xNaxYCl6: Synthesis, Structures, Ionic Conductivity . The influence of the substitution of Ag+ by Na+ ions on the crystal structure and the ionic conductivity of Ag3YCl6 (stuffed LiSbF6-type structure) has been investigated. The system Ag3?xNaxYCl6 forms a complete solid solution. The stuffed LiSbF6-type structure is stable for all compositions. For compounds with Na+ contents of x > 1.67, the cryolite-type structure is observed as the high-temperature form. The transition temperature decreases steadily with increasing Na+ content. The “end member” phase Na3YCl6 transforms at 243 K from the monoclinic cryolite-type structure to the stuffed LiSbF6-type structure (trigonal, R3 ; a = 697.3(1), c = 1 868.4(14) pm, Z = 3; R = 0.094; Rw = 0.069). The crystal structures of Ag1.3Na1.7YCl6 (trigonal, R3 ; a = 691.5(2), c = 1 853.7(6) pm, Z = 3; R = 0.099, Rw = 0.081) and AgNa2YCl6 (trigonal, R3 ; a = 691.7(1), c = 1 853.9(5) pm, Z = 3; R = 0.099, Rw = 0.064) have also been determined. Both chlorides crystallize like Ag3YCl6 and Na3YCl6-I in the stuffed LiSbF6-type structure. The monovalent cations, Ag+ and Na+, are distributed over the five octahedral voids that are occupied by the Ag+ ions alone in Ag3YCl6. The ionic conductivity for compounds within the solid solution Ag3?xNaxYCl6 decreases with increasing Na+ content. The values for Na3YCl6 (σ = 1 · 10?6 Ω?1 cm?1 at T = 500 K) are by 2.5 to 3.5 orders of magnitude smaller than those for Ag3YCl6 (σ = 6 · 10?4 Ω?1 cm?1 at T = 500 K).  相似文献   

2.
Ternary Halides of the A3MX6 Type. IV. Ternary Halides of Scandium with Sodium, Na3ScX6 (X = F, Cl, Br): Synthesis, Structures, Ionic Conductivity X-ray studies on single crystals of Na3ScF6 and Na3ScBr6 show, that Na3ScF6 crystallizes with the cryolite type (monoclinic, P21/n, Z = 2, a = 560.16(9), b = 580.31(8), c = 812.1(2)pm, β = 90.720(14)°) and Na3ScBr6, as the only ternary bromide of the rare earth elements with sodium, in the Na3CrCl6 type (trigonal, P3 1c, Z = 2, a = 728.95(7), c = 1309.29(17)pm). The ionic conductivity of powder samples of Na3ScF6, Na3ScBr6 and of Na3ScCl6 was studied by impedance spectroscopy. Activation energies were determined as 1.22 eV, 0.80 eV and 0.71 eV for the fluoride, chloride and bromide, respectively. The differences are explained from the crystal structures and the sizes and polarizabilities of the anions.  相似文献   

3.
Synthesis and Crystal Structures of the Ternary Rare Earth Chlorides NaMCl4 (M = Eu—Yb, Y) Single crystals of NaErCl4 were obtained from the melt of NaCl and ErCl3 (1:1 molar ratio) by slow cooling. It crystallizes in the monoclinic crystal system (space group P2/c) with the structure of α-NiWO4 with a = 632.24(9) pm, b = 759.78(9) pm, c = 674.2(1) pm, b? = 92.310(3)°, Z = 2. Two preparative routes to pure powder samples of the chlorides NaMCl4 are described. At room temperature, these are found to be isotypic with NaErCl4 (M = Tm—Yb; II) while the triclinic structure of NaGdCl4 is adopted with M = Gd—Ho, Y (I). Phase transitions from one structure to the other are observed for all compounds. The transition temperatures decrease with decreasing size of the ion M3+.  相似文献   

4.
Synthesis and Crystal Structure of the Ternary Rare Earth Chlorides Na2MCl5 (M = Sm, Eu, Gd) Single crystals of Na2EuCl5 were obtained from the melt of NaCl and EuCl3 in a 2:1.2 molar ratio by slow cooling. It crystallizes in the orthorhombic crystal system (space group Pnma) with the structure of K2PrCl5 with a = 1 204.0(3) pm, b = 833.9(3) pm, c = 768.2(3) pm, Z = 4. Pure powder samples of the compounds Na2MCl5 (M = Sm? Gd) are available by heating mixtures of the binary components below the melting point.  相似文献   

5.
Ternary Halides of the A3MX6 Type I. A3YCI6 (A = K, NH4, Rb, Cs): Synthesis, Structures, Thermal Behaviour. Some Analogous Chlorides of the Lanthanides Reaction of the trichlorides MCl3 (M = Y, Tb? Lu) with alkali chlorides AC1 (A = K, Rb, Cs) in evacuated silica ampoules at 850?900°C yields A3MCl6-type chlorides. (NH4)3YCl6 is obtained via the ammonium-chloride route. The crystal structure of Rb3YCl6 (monoclinic, C2/c (no. 15), Z = 8, a = 2583(1)pm, b = 788.9(4)pm, c = 1283.9(7)pm, p = 99.63(4)°, R = 0.062, Rw = 0.050) is that of Cs3BiCl6. The Rb3YCl6/Cs3BiCl6 structure and the closely related structures of K3MoCl6 and In2CI3 are derived from the elpasolite-type of structure (K2NaAlF6) making use of the model of closest-packed layer structures. Cell parameters for the chlorides Rb3MCl6 (M = Y, Tb? Lu) and Cs3YCl6 and Cs3ErCl6 as well, which are all isostructural with Rb3YCl6, are given. The “system” (K, NH4, Rb, Cs)YCl6 has been investigated by DTA and high-temperature X-ray powder diffractometry.  相似文献   

6.
Ternary Halides of the A3MX6 Type. VI. Ternary Chlorides of the Rare-Earth Elements with Lithium, Li3MCl6 (M ? Tb? Lu, Y, Sc): Synthesis, Crystal Structures, and Ionic Motion Single crystal X-ray studies on the ternary chlorides Li3ErCl6, Li3YbCl6 and Li3ScCl6 show that they crystallize in three different structure types. Li3ErCl6 (trigonal, P3 ml, Z = 3, a = 1117.7(2); c = 603.6(2) pm; the chlorides with M ? Tb? Tm, Y are isotypic) and Li3YbCl6 (orthorhombic, Pnma, Z = 4, a = 1286.6(1); b = 1113.2(1); c = 602.95(8) pm; Li3LuCl6 is isotypic) have very similar structures that may be derived from hexagonal closest packings of chloride ions with the cations occupying octahedral holes in part statistically. Li3ScCl6 (monoclinic, C2/m, Z = 2, a = 639.8(1); b = 1104.0(2); c = 639,1(1) pm; β = 109.89(1)°) crystallizes isotypic with Na3GdI6 and Li3ErBr6, structures that may be derived from a cubic closes packings of anions. The ionic movement in Li3YCl6 and Li3YbCl6 has been investigated by impedance and 7Li-NMR spectroscopy.  相似文献   

7.
Ternary Rare-Earth Halides of the A2MX5 Type (A = K, In, NH4, Rb, Cs; X = Cl, Br, I) Ternary rare-earth (=M) chlorides, bromides, and iodides In2MCl5, (NH4)2MCl5, Rb2MCl5, Cs2MCl5, CsRbMCl5, K2MBr5, Rb2MBr5, K2MI5, and Rb2MI5 have been synthesized. Single crystals of In2PrCl5, Rb2PrCl5, K2PrBr5, and K2PrI5 were grown and the structures refined. The other halides were characterized by x-ray powder patterns. They are isotypic either with K2PrCl5(orthorhombic, Pnma, Z = 4, hexagonal arrangement of chains of edge-connected polyhedra [PrX7]) or with Cs2DyCl5 (orthorhombic, Pbnm, Z = 4, hexagonal arrangement of cis-corner-connected octahedra [DyCl6]) which may be discriminated in structure field diagrams. The thermal expansion was investigated für Cs2LuCl5 and Rb2PrX5 (X = Cl, Br, I).  相似文献   

8.
Ternary Halides of the A3MX6Type. VII. The Bromides Li3MBr6 (M=Sm? Lu, Y): Synthesis, Crystal Structure, and Ionic Mobility The bromides Li3MBr6 (M=Sm? Lu, Y) are obtained from the binary components LiBr and MBr3. They crystallize with a substitution/addition variant of the AlCl3? type of structure as was established from single crystal X-ray diffraction data for Li3ErBr6 (monoclinic, C2/m, Z = 2, a = 689.0(3), b = 1191.6(9), c = 684.2(6) pm, β = 109.77(6)°) and by powder X-ray diffraction for the remaining bromides. They are isotypic with Na3GdI6 and Li3ScCl6, respectively. Impedance spectroscopy and 7Li-NMR spectroscopy show that the lithium ions are highly mobile.  相似文献   

9.
New Halogenozincates M ZnX4 (MI = Li, Na; X = Cl, Br) of Olivine Type The hitherto unknown tetrabromozincates Li2ZnBr4 and Na2ZnBr4 have been prepared. Quaternary halides Li2Zn(Cl, Br)4 and Li2Zn(Br, I)4 have been not obtained due to decomposition to mixtures of LiCl and ZnBr2, and LiBr and ZnI2. The crystal structures of the olivine-type bromides and of the high-temperature polymorph of Li2ZnCl4 have been determined by neutron powder diffraction using the Rietveld method (space group Pnma, Z = 4, a = 1 360.41(4), b = 788.47(2), c = 647.07(2) pm, RI = 9.07% (Li2ZnBr4), a = 1 446.32(5), b = 853.02(3), c = 676.61(2) pm, RI = 9.29% (Na2ZnBr4), a = 1 277.60(3), b = 741.76(2), c = 611.10(1) pm, RI = 7.63% (Li2ZnCl4)). The Raman spectra as well as the results of thermal analyses (DSC) and conductivity measurements (impedance spectroscopy) are presented and discussed. Contrary to Li2ZnCl4, Li2ZnBr4 and Na2ZnBr4 do not undergo any phase transition between 20°C and their melting points.  相似文献   

10.
Ternary Bromides and Iodides of Divalent Lanthanides and Their Alkaline-Earth Analoga of the Type AMX3 and AM2X5 Metallothermic reduction of the tribromides and -iodides MX3 (M = Sm, Dy, Tm, Yb) with alkali metals as well as with indium and thallium (A = Cs, Rb, K, In, Tl) results in most cases in ternary compounds with the composition AMX3 and AM2X5, respectively. Analogous compounds with M = Ba, Sr, Ca were synthesized from the binary components. The AMX3 compounds crystallize with the following types of structure: the perovskite-type and its distorted variants, the NaNbO3-II- and the GdFeO3-type, the NH4CdCl3- and the stuffed PuBr3-type. These structure types differ by a gain of condensation of the [MX6] octahedra (three-dimensional connection via corners within the variants of the perovskite-type, double chains of edge- and face-connected octahedra within the NH4CdCl3-type, and layers of corner- and edge-connected octahedra within the stuffed PuBr3-type of structure). This comes along with a reduction of the coordination number of A+ from 12 (“ideal” perovskite) to 8 + 2 (GdFeO3-type), 9 (NH4CdCl3-type), and 8 (stuffed PuBr3-type). Thus, the A/[MX6] size ratio determines which AMX3 type of structure is adopted. If the M2+ ion is large enough, ternary compounds with the composition AM2X5 occur either in addition to the AMX3 compounds or exclusively. They crystallize with the TlPb2Cl5 type of structure (C.N.(M2+) = 7 and 8). All of the AMX3 and AM2X5 compounds are summarized in a structure field diagram.  相似文献   

11.
The title compounds 3‐5 are accessible by treatment of P(C6H4CH2NMe2)3( 1 ) with CuX ( 2a : X = Cl, 2b : X = Br, 2c : X = I) in the ratio of 1:1 or 1:2 in very good yields. Reaction of 1 with equimolar amounts of 2a affords the copper(I) chloride [P(C6H4CH2NMe2)3]CuCl ( 3 ). With a further equivalent of 2a homobimetallic [P(C6H4CH2NMe2)3]Cu2Cl2 ( 4 ) is formed, which also can be synthesized by the reaction of 1 with two equivalents of 2a. Complex 3 reacts with CuX (X = Br, I)to afford [P(C6H4CH2NMe2)3]Cu2ClX ( 5a : X = Br; 5b : X = I) in which mixed halides are present. The newly synthesized complexes 3‐5 were characterized by elemental analyses, by their IR‐, 1H‐, 13C{1H}‐ and 31P{1H}‐NMR spectra as well as by mass spectrometrical studies. The solid‐state structures of complexes 3 and 4 are reported. Mononuclear 3 crystallizes in the monoclinic space group P21/c with the cell parameters a = 14.285(2), b = 10.853(2), c = 17.425(2) Å , β = 103.310(10)?, V = 2628.9(7) Å 3 and Z = 4 with 4053 observed unique reflections; R1 = 0.0314. The crystal structure of 3 consists of monomeric molecules with planar coordinated copper(I) centres (CuClNP). Homobimetallic 4 crystallizes in the monoclinic space group P21/n with a = 23.905(4), b = 10.874(3), c = 25.314(5), β = 99.130(10)?, V = 6497(2) /Aring; 3 and Z = 4 with 9021 observed unique reflections; R1 = 0.0480. In 4 one of two copper(I) centres possesses a distorted trigonal‐pyramidal environment, while the other one is almost square‐pyramidal coordinated. The Cu2Cl2 segment resembles to a building block which is set up by a contact ion pair consisting of Cu+ and [CuCl2] , respectively.  相似文献   

12.
Novel Fast Ion Conductors of the Type M MIIICl6 (MI = Li, Na, Ag; MIII = In, Y) The ternary chlorides Li3InCl6, Na3InCl6, Ag3InCl6, and Li3YCl6 have been studied by difference scanning calorimetry, high-temperature X-ray, infrared, and high-temperature Raman methods. Impedance spectroscopic measurements exhibit fast ionic conductivity increasing in the sequence Na3InCl6 < Li3YCl6 < Ag3InCl6 < Li3InCl6. In the range of 300°C, Li3InCl6 is the best lithium ion conductor known so far (σ = 0,2 Ω?1 cm?1 at 300°C). With the exception of Na3InCl6, the chlorides exhibit complicated order-disorder phase transitions.  相似文献   

13.
Open sheet and framework structures [CuX{cyclo-(MeAsO)4}] (X=Cl, Br, I) 1 – 3 and [Cu3X3{cyclo-(MeAsO)4}2] (X=Cl, Br) 4 and 5 may be prepared by self-assembly from CuX and methylcycloarsoxane (MeAsO)n in acetonitrile solution. 1 – 3 exhibit 44 nets in which (CuX)2 units are connected through μ-1 KAs1 : 2 KAs3 coordinated (MeAsO)4 ligands into large 28-membered rings. In contrast, adjacent [CuX] chains in 4 and 5 are connected into sheets by μ4-K4 As coordinated (MeAsO)4 building blocks, with μ-1 KAs1 : 2 KAs3 bridging of these layers by independent (MeAsO)4 cyclotetramers leading to the generation of a porous framework structure. 1 – 5 were characterised by X-ray structural analysis.  相似文献   

14.
The reactions of Te2Br with MoOBr3, TeCl4 with MoNCl2/MoOCl3, and Te with WBr5/WOBr3 yield black, needle-like crystals of [Te15X4][MOX4]2 (M = Mo, W; X = Cl, Br). The crystal structure determinations [Te15Br4][MoOBr4]2: monoclinic, Z = 1, C2/m, a = 1595.9(4) pm, b = 403.6(1) pm, c = 1600.4(4) pm, β = 112.02(2)°; [Te15Cl4][MoOCl4]2: C2/m, a = 1535.3(5) pm, b = 402.8(2) pm, c = 1569.6(5) pm, β = 112.02(2)°; [Te15Br4][WOBr4]2: C2, a = 1592.4(4) pm, b = 397.5(1) pm, c = 1593.4(5) pm, β = 111.76(2)° show that all three compounds are isotypic and consist of one-dimensional ([Te15X4]2+)n and ([MOX4]?)n strands. The structures of the cationic strands are closely related to the tellurium subhalides Te2X (X = Br, I). One of the two rows of halogen atoms that bridges the band of condensed Te6 rings is stripped off, and additionally one Te position has only 75% occupancy which leads to the formula ([Te15X4]2+)n (X = Cl, Br) for the cation. The anionic substructures consist of tetrahalogenooxometalate ions [MOX4]? that are linked by linear oxygen bridges to polymeric strands. The compounds are paramagnetic with one unpaired electron per metal atom indicating oxidation state Mv, and are weak semiconductors.  相似文献   

15.
Chalcogenohalogenogallates(III) and -indates(III): A New Class of Compounds for Elements of the Third Main Group. Preparation and Structure of [Ph4P]2[In2SX6], [Et4N]3[In3E3Cl6] · MeCN and [Et4N]3[Ga3S3Cl6] · THF (X = Cl, Br; E = S, Se) [In2SCl6]2?, [In2SBr6]2?, [In3S3Cl6]3?, [In3Se3Cl6]3?, and [Ga3S3Cl6]3? were synthesised as the first known chalcogenohalogeno anions of main group 3 elements. [Ph4P]2[In2SCl6] ( 1 ) (P1 ; a = 10.876(4) Å, b = 12.711(6) Å, c = 19.634(7) Å, α = 107.21(3)°, β = 96.80(3)°, γ = 109.78(3)°; Z = 2) and [Ph4P]2[In2SBr6] ( 2 ) (C2/c; a = 48.290(9) Å, b = 11.974(4) Å, c = 17.188(5) Å, β = 93.57(3)°, Z = 8) were prepared by reaction of InX3, (CH3)3SiSSi(CH3)3 and Ph4PX (X = Cl, Br) in acetonitrile. The reaction of MCl3 (M = Ga, In) with Et4NSH/Et4NSeH in acetonitrile gave [Et4N]3[In3S3Cl6] · MeCN ( 3 ) (P21/c; a = 17.328(4) Å, b = 12.694(3) Å, c = 21.409(4) Å, β = 112.18(1)°, Z = 4), [Et4N]3[In3Se3Cl6] · MeCN ( 4 ) (P21/c; a = 17.460(4) Å, b = 12.816(2) Å, c = 21.513(4) Å, β = 112.16(2)°, Z = 4), and [Et4N]3[Ga3S3Cl6] · THF ( 5 ) (P21/n; a = 11.967(3) Å, b = 23.404(9) Å, c = 16.260(3) Å, β = 90.75(2)°, Z = 4). The [In2SX6]2? anions (X = Cl, Br) in 1 and 2 consist of two InSX3 tetrahedra sharing a common sulfur atom. The frameworks of 3, 4 and 5 each contain a six-membered ring of alternating metal and chalcogen atoms. Two terminal chlorine atoms complete a distorted tetrahedral coordination sphere around each metal atom.  相似文献   

16.
New Ternary Phosphides and Arsenides of Cesium and Element of the 8th Transition Metal Group In the ternary systems Cesium/8th transition metal group/5th main group some new compounds were found and investigated. By single crystal measurements CsRh2P2 was found to crystallize in the space group 14/mmm with the lattice constants a = 390.11 pm and c = 1429.36 pm. The new compounds with the formula CsM2X2 (M = Fe, Co, Ru, Rh, Ir; X = P or As) crystallize in the ThCr2Si2-type structure, compounds of the formula Cs2MX2 (M = Ni, Pd, Pt; X = P or As) can be placed in a line with the K2PdP2-type structure.  相似文献   

17.
Syntheses and Crystal Structures of Ternary Carbides Na2PdC2 and Na2PtC2 Na2PdC2 and Na2PtC2 were synthesized by the reaction of sodium carbide with palladium and platinum respectively. The crystal structures could be solved from X-ray powder diffraction data (space group: P3 m1, Z = 1). Both compounds crystallize in a new structure type with [M(C2)2/22?] chains (M?Pd, Pt) as the characteristic structural unit. The existence of a C? C triple bond was confirmed by Raman spectroscopy.  相似文献   

18.
Synthesis, Structure and Thermolysis of NH4[Re3Br10] NH4[Re3Br10] crystallizes as dark brown single crystals upon slow cooling of a hot, saturated hydrobromic-acid solution of [Re3Br9(H2O)2] after the addition of NH4Br. The crystal structure (monoclinic, C2/m (Nr. 12); Z = 4; a = 1461.6(7), b = 1 085.6(4), c = 1030.3(7) pm, β = 92.63(4)°, Vm = 245.9(4)cm3/mol; R = 0.097, Rw = 0.043) contains [Re3Br12]? units that share two common edges. These chains run along [010] and are held together by NH4+ ions. Each NH4+ is surrounded by eight Br? from four different chains. The first step of the thermal decomposition at 290°C is the disproportionation to ReBr3 (ReCl3 type), rhenium metal and (NH4)2[ReBr6]. Secondly, the internal reduction of (NH4)2[ReBr6] at 390°C to rhenium metal takes place.  相似文献   

19.
Ternary Thallium Platinum and Thallium Palladium Chalcogenides Tl2M4X6. Syntheses, Crystal Structures, and Bonding Relations The compounds Tl2Pt4S6, Tl2Pt4Se6, Tl2Pt4Te6 and Tl2Pd4Se6 can be synthesized by a melting reaction from the elements or by the reaction of thallium carbonate, transition metal powder and chalcogen powder in the temperature range between 400°C and 950°C. X-Ray investigations on single crystals and powdered samples revealed a new structure type for the compounds, that can be understood as stacking variant of the already known atom arrangement of the alkaline metal platinum chalkogenides A2Pt4X6 (A ? alkaline metal, X ? S, Se). The short distances thallium-platinum and thallium-palladium, respectively, as well as the results of Extended-Hückel-calculations indicate covalent bonds between the main group and transition metal atoms.  相似文献   

20.
New Ternary Compounds of Cesium and Elements of the 8th Transition Metal Group and the 5th Main Group In the ternary systems Cesium/element of the 8th transition metal group/element of the 5th main group some new compounds were found and investigated. Compounds of the formula Cs2MX2 (M = Pt, Pd, Ni; X = P, Sb, Bi) can be placed in a line with the K2PdP2-type structure. The new compound with the formula CsFe2Sb2 crystallizes in the ThCr2Si2-type structure. By single crystal measurements CsFe2As2 was found to crystallize in the space group I4/mmm with the lattice constants a = 389.43 pm and c = 1 509.97 pm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号