首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is a series of articles that deals with fundamental aspects of the effects of the structure of latex particles of acrylic copolymers on their adhesion behavior. Specifically, relationship or analogy between rheological properties and adhesion performance of the acrylic copolymers was demonstrated. The first part of this series concerns the synthesis and characterization of latex particles with desired structures and compositions, and the experimental results of peel adhesion. The second part develops an analogy between the peel adhesion performance of the adhesives and rheological properties of the corresponding copolymers. The third part addresses the generalities and particularities of three major tests for adhesion: peeling, blistering, and spontaneous peeling. Three types of structured latex particles were synthesized by three different emulsion polymerization processes: the first type had a uniform composition over the entire particles with a glass transition temperature (Tg) varying between ?40°C and 0°C, depending upon the compositions of monomers involved in the copolymer; the second type was of core-shell structure. As for the third type, the composition of monomers varied gradually across the particle radii. The glass transition behavior and the dynamic mechanical properties in the solid state of the copolymers confirmed the structures of the corresponding latex particles. On the other hand, the peel adhesion performance of the films of these latex particles varied with the dynamic mechanical properties of the corresponding copolymers. This implies that a correlation could be found between the structure of the latex particles, dynamic mechanical properties in the solid state of the corresponding copolymers, and the peel adhesion performance of the adhesive films. ©1995 John Wiley & Sons, Inc.  相似文献   

2.
The linear viscoelastic behavior of model rubbertoughened polymer melts has been studied. The most significant influence of the dispersed crosslinked rubber phase on the melt rheology of the blends is the existence of a secondary plateau for the storage modulus G′ at low frequencies. This behavior was ascribed to a percolation phenomenon, leading to the formation of a threedimensional network of inclusions, and contributing to the elasticity at low frequencies of the blend. Two different systems were investigated: (a) a polystyrene matrix with crosslinked and structured latex particles and (b) silicon oil matrices with homogeneous crosslinked PMMA particles. An initial shearing history was found to influence the dynamic mechanical properties of the molten blends and in particular to lower the lowfrequency plateau value for G′. During a subsequent annealing, the plateau modulus increases again. These results are in agreement with the assumption of a particle network.  相似文献   

3.
A facile synthesis of functionalized poly[3(4)-methylstyrene] (PMS) latex particles containing aldehyde and carboxylic acid groups was achieved via an emulsion polymerization of 3(4)-methylstyrene in the presence of sodium dodecyl sulfonate, followed by an in-situ oxidation catalyzed by copper(II) chloride and t-butyl hydroperoxide (t-BuOOH) in the presence of t-butyl alcohol (t-BuOH). The structure of the anionic surfactant, metal catalyst, organic solvent, oxidant, and their concentrations strongly affected the rate of oxidation and the stability of the emulsion. The average size of the polymer latex particles was found to increase after oxidation, and the polymer was slightly crosslinked. A free-radical mechanism is proposed involving metal-catalyzed decomposition of t-BuOOH and benzylic oxidation. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1863–1872, 1997  相似文献   

4.
The influence of middle and outer block composition of symmetric triblock copolymers consisting of a polystyrene–polybutadiene (S/B) random middle block and two polystyrene (PS) outer blocks on morphology and rheological behavior has been investigated. Master curves are obtained by shifting the experimental data measured at different temperatures using time‐temperature superposition principle, the validity of which was confirmed in the linear viscoelastic regime. The rheological properties are observed to be strongly influenced by the relative composition of the S‐SB‐S triblock copolymers. Increasing the S/B ratio from 1:1 to 1:2 in the middle block has lead to a change in morphology from wormlike to lamellar, which is also accompanied with broad and sharp tan δ peaks in the dynamic mechanical measurements, respectively. The storage and loss modulus have been observed to increase with the increase in PS contents in the outer blocks and PB content in the middle block. The triblock copolymer with wormlike structure showed terminal linear viscoelastic behavior, whereas the ones with lamellar morphology showed nonterminal flow behavior in the similar low‐frequency regime. The relaxation modulus (Gt) has been observed to increase four times when the S/B ratio is increased from 1:1 to 1:2, whereas it increases threefold when the PS‐content in the outer block was increased by just 8 wt %. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2776–2788, 2006  相似文献   

5.
Surface-functionalized cationic poly(methylstyrene) (PMS) latex particles containing aldehyde and carboxylic acid groups were successfully achieved via an emulsion polymerization of 3(4)-methylstyrene in the presence of cetyltrimethylammonium bromide, followed by an in-situ oxidation catalyzed by copper chloride and tert-butyl hydroperoxide (t-BuOOH). Factors such as the type of metal catalyst, oxidant, and their concentration strongly affected the rate of oxidation. Step addition of t-BuOOH resulted in both a higher degree of oxidation and a more uniform distribution of particle size of the functionalized PMS as compared to the batch addition method. The effect of organic solvent was found to be insignificant, and the oxidation could still proceed in its absence. The particle sizes increased significantly during the oxidation but could be controlled by using crosslinked PMS latexes. Finally, the versatility of this oxidation process was demonstrated by oxidation of the polymer with a solid loading as high as 28%. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3585–3593, 1997  相似文献   

6.
The covalent immobilization of trypsin onto poly[(methyl methacrylate)-co-(ethyl acrylate)-co-(acrylic acid)] latex particles, produced by a soap-free emulsion polymerization technique, was carried out using the carbodiimide method. The catalytic properties and kinetic parameters, as well as the stability of the immobilized enzyme were compared to those of the free enzyme. Results showed that the optimum temperature and pH for the immobilized trypsin in the hydrolysis of casein were 55 degrees C and 8.5, both of which were higher than that of the free form. It was found that K(m) (Michaelis constant) was 45.7 mg . ml(-1) and V(max) (maximal reaction rate) was 793.0 microg . min(-1) for immobilized trypsin, compared to a K(m) of 30.0 mg . ml(-1) and a V(max) of 5 467.5 microg . min(-1) for free trypsin. The immobilized trypsin exhibited much better thermal and chemical stabilities than its free counterpart and maintained over 63% of its initial activity after reusing ten times.  相似文献   

7.
Using a combination of static light scattering, potentiometry, and viscometry, structural changes of latex particles of ethyl acrylate—methacrylic acid (20–70 wt%) copolymers during neutralization in the presence of methanol were investigated. It was found that the latex particles disintegrate into small subparticles, swell, and at a high content of methacrylic acid units dissolve. Disintegration of latex particles is explained by considering the particles as agglomerates formed during polymerization by coalescence of smaller particles.  相似文献   

8.
Styrene-butadiene copolymers of the S-B-S and S-B-S-B-S types, both unmodified and extended with paraffinic-naphthenic oil, were studied by dynamic mechanical spectroscopy and capillary rheometry. In the triblocks at low deformation rates, an increase in 1-vinylethylene unit content leads to an increase in complex dynamic viscosity |η*|. This may be explained by their different supermolecular structure with a higher proportion of long relaxation times. The pentablocks show a considerable effect of molecular parameters on their flow behaviour at low deformation rates. In all the systems, steady viscosity η shows no significant differences at higher shear rates. Obviously the supermolecular structure is disintegrated in these conditions and the effect of chemical structure is negligible. An expected decrease in viscosity in the whole range of deformation rates was observed with the oil-extended copolymer. The dependences of complex dynamic viscosity on angular frequency were compared with those of steady viscosity on shear rate but no unequivocal conclusion as regards the validity of the Cox-Merz rule could be reached.  相似文献   

9.
Poly(styrene-co-acrylic acid) (St/AA) latices were prepared by using a batch soap-free emulsion copolymerisation in non-buffered medium. Polymerisation kinetics, followed by gravimetric method, revealed that increasing AA comonomer concentration was directly proportional to the copolymerisation rate, while adding AA comonomer caused a strong decrease of particle size of final St/AA latex particle without affecting the size distribution. Transmission electron microscopy indicated that the particles were monodispersed and spherical in shape irrespective of AA amount used in the investigated range. The colloidal stability of the latices was increased upon increasing the AA concentration; owing to the electrosteric stabilisation originated from AA-rich layer on the particle surface. In addition, electrophoretic mobility of formed particles versus polymerisation conversion exhibited the constancy of the surface charge density during the polymerisation process and was inferred for discussion of the polymerisation mechanism of this system.  相似文献   

10.
Summary: Low density polyethylene (LDPE) was functionalized with different molar ratios of styrene (St) to acrylic acid (AA) in the presence of dicumyl peroxide (DCP) in the molten state. The resultant LDPE was characterized by gel content and torque analysis. The results showed that the gel content of polymers grafted with small molar ratios (St/AA = 0.5) was always higher than those grafted with the equimolar St/AA ratio. The effect of DCP amount and AA concentration on the grafting degree of AA was investigated. The suitable DCP amount and AA concentration was obtained. Functionalized LDPE [LDPE-g-(AA-St)] was characterized by Fourier transform infrared spectroscopy (FTIR), melt flow rate (MFR), water contact angle and capillary rheometry. The results showed that both MFR and grafting degree of AA of LDPE-g-(AA-St) was the highest when an equimolar AA/St ratio was used, but when mixtures of St and AA (St/AA = 1/10) were loaded, the water contact angle of the film prepared from the LDPE-g-(AA-St) was the smallest, which indicated that the hydrophicity of the film surface not only depended on the grafting degree, but also the molar ratios of the hydrophobic/hydrophilic groups.  相似文献   

11.
In order to obtain functional polymer latex particles with clean surface and with surface carboxyl groups, P(MMA-EA) seed particles with the diameter of 335 nm were first synthesized via soap-free batch emulsion polymerization of methyl methacrylate (MMA) and ethyl acrylate (EA), and then the seeded emulsion copolymerization of MMA, EA and MAA (methacrylic acid) onto the seed particles were performed in the absence of emulsifier. Influences of ingredients and conditions on polymerization, latex particle size (Dp) and its distribution were investigated. Results showed that most of the monomers polymerized onto the seed latex particles in the second step of polymerization by using drop-wise addition method, and Dp increased from 483 nm to 829 nm with the mass ratio of core/shell monomers [C]/[S] decreased from 1:2 to 1:15. It was found that Dp decreased with the increase of MAA and initiator amounts, and the size of the latex particles became uniform with the decrease of MAA amount and with the increase of [C]/[S] value.  相似文献   

12.
The effect of steam on the micro‐phase structure and mechanical properties of different block copolymers used in biomedical devices is investigated via FT‐IR, tensile tests and dynamic mechanical analysis (DMA). Steam sterilization, commonly performed on medical devices and simulated in this work, affects the copolymers' morphology, due to high temperature and humidity conditions. FT‐IR analysis reveals that steam induces a modification in the crystalline conformations of copolymers with a pre‐existing hydrogen bonding network, that is, thermoplastic polyurethanes (TPU) and poly(ether‐block‐amide) (PEBA), while it does not significantly affect the domain conformation in styrenic block copolymers (SEBS), due to weak interaction with water. As a consequence, relevant changes of the mechanical properties, closely related to the microdomain structure, are found for TPU and PEBA after sterilization, while SEBS mechanical behavior remains stable, as demonstrated by tensile tests and DMA results. For this reason, SEBS is suggested as the best choice in terms of durability in biomedical applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1337–1346  相似文献   

13.
Several Ziegler-Natta copolymers of iPP with ethylene or 1-butene, and terpolymers with both counits have been characterized, devoting special attention to the effect of composition and processing conditions on the crystal structure and final properties. DSC and X-ray diffraction were used to study the polymorphism of copolymers and terpolymers. Comonomer insertion interrupts the isotactic sequences, acting as a structural defect, and the formation of γ form is enhanced. Moreover, crystallinity decreases and crystal structure is modified. Comonomer type and concentration determine the extent of these modifications, resulting in important changes in macroscopic properties. In particular, the excellent optical properties of the analyzed terpolymers make them very attractive for applications such as transparent film or packaging.  相似文献   

14.
We used a unique approach based on contact mechanics to quantify the adhesive and linear viscoelastic properties of latex films approximately 100 μm thick. The latex films were formed from a mixture of two particle types and form stable films consisting of rigid and compliant regions. We used atomic force microscopy to verify that these regions remained well dispersed on the length scale of the original particle size. The properties of the films were determined by ?h, the volume fraction of the stiffer component. For ?h < 0.45, the films were quite adhesive, with viscoelastic properties determined by the compliant matrix material. Adhesive interactions between the film and indenter enabled us to oscillate the indenter in the direction normal to the film surface while maintaining a constant contact area, allowing us to determine the frequency dependence of the dynamic moduli of the films. Stiffer films with higher volume fractions of hard particles were characterized by indentation measurements, from which we were able to determine the time dependence of the relaxation modulus of the latex films. All results were consistent with a power‐law form of the relaxation modulus with an exponent of 0.25. The magnitude of the relaxation modulus increased by a factor of 3000 as the volume fraction of hard particles increased from 0 to 0.89. For low values of ?h, the composition dependence of the film stiffness was similar to the concentration dependence of the viscosity of spherical particle suspensions. A much weaker concentration dependence was observed for the highest values of ?h, where the properties of the films were dominated by the stiffer component. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3090–3102, 2001  相似文献   

15.
A magnetic poly(methyl methacrylate) (PMMA) composite latex was prepared by soapless emulsion polymerization in the presence of ferrofluid, and the ferrofluid was prepared by means of a coprecipitation method. The effects of various polymerization parameters, such as the monomer concentration, ferrofluid content, and initiator concentration, on the conversion curve and particle size of the magnetic composite latex particles were examined in detail. The results showed that two nucleation mechanisms were involved according to the polymerization conditions. In the monomer‐rich and less ferrofluid system, self‐nucleation of PMMA was dominant over the entire course of emulsion polymerization. In the ferrofluid‐rich system, seeded emulsion polymerization was the main course to form the magnetic composite latex particles. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5695–5705, 2004  相似文献   

16.
Fluorinated acrylate latex was successfully prepared by semi-continuous seeded emulsion polymerization of dodecafluoroheptyl methacrylate (DFMA) with butyl acrylate (BA), methyl methacrylate (MMA) initiated by potassium persulfate in the water. The resultant latexes and their films are characterized with Fourier transform infrared (FTIR) spectrometry, contact angle determinator, dynamic light scattering detector and surface tension determinator. Effect of different surfactants on colloidal and polymer properties of fluorinated acrylate latex was studied. Results show that the latex prepared with sodium dodecyl benzene sulfonate surfactant has the smallest particle size and contact angle but the moderate surface tension. The latex prepared with perfluorooctanesulfonic acid potassium surfactant has the smallest surface tension, moderate particle size but the biggest contact angle. The latex prepared with sodium 2-hydroxy-3-(methacryloyloxy) prop- ane-1-sulfonate surfactant has the biggest particle size and surface tension but moderate contact angle. In addition, the latex prepared with sodium 2-hydroxy-3-(methacryloyloxy) prop- ane-1-sulfonate has higher electrolyte stability.  相似文献   

17.
Standardized mixing procedure was applied to the analysis of flocculation of polystyrene latex (PSL) particles with polyelectrolytes. After confirming the initial enhancement of flocculation rate in the very beginning followed by abrupt stop with excess dosage, attention was shifted to the system of moderate dosage. In the former, effects of ionic strength were further analyzed to find the consistency with adsorption isotherm. In the latter, flocculation started slowly in the beginning, sometime slower than salt-induced rapid coagulation, however, the rate gradually increases in the middle stage. Often, the increased rate exceeds that of salt-induced rapid coagulation. This behavior emerged more clearly in the case of lower ionic strength. This is the indication that the rate of relaxation of polymer on the colloidal surface is a function of surface coverage and ionic strength. The ultimate degree of flocculation is usually higher than that observed for excess dosage. The size distribution of flocs was also examined, however, no clear difference between different experimental conditions was confirmed for the same degree of flocculation.  相似文献   

18.
Polymerizable styrenic surfactants (surfmers) and nonreactive analogs, have been applied in emulsion copolymerization of acrylic monomers in a seeded semibatch process. Stable core-shell latexes with low levels of coagulum and controlled particle size have been obtained; some of them, with either steric or electrosteric stabilization, display excellent stability to electrolytes, freeze–thaw cycles, and shear flocculation. In addition, the reactive surfactants lead to films with superior performance due to reduced migration of surfactant to the surface (contact angle measurements) and dimensional stability when the films are dipped in water, as well as less water uptake. Some differences also appear in particle morphologies. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4205–4217, 1999  相似文献   

19.
The luminescence and photochemical properties of EuIII complexes with copolymers of acrylic acid and butyl methacrylate have been studied by luminescence, IR spectroscopy, and EXAFS.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 958–959, May, 1994.  相似文献   

20.
In recent decades, the basic technology of pressure-sensitive adhesive (PSA) acrylics has developed into a sophisticated science. The main properties of acrylic PSAs such as tack, peel adhesion, and shear strength are determined to a large extent by the kind and quantity of crosslinking agents added to the synthesized PSAs. In order to improve their adhesive (tack, peel adhesion) and cohesive (shear strength) properties, a wide range of amino resin thermal crosslinkers are tested. An acrylic PSA based on 2-ethylhexylacrylate, n-butyl acrylate, and acrylic acid was synthesized by performing a radical polymerization in ethyl acetate. After the addition of amino resins to the acrylic PSA and carrying out thermally initiated crosslinking processes to prepare one-sided self-adhesive tapes, their properties were assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号