首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetics for reactions of phenoxy radical, C6H5O, with itself and with O3 were examined at 298 K and low pressure (1 Torr) using discharge flow coupled with mass spectrometry (DF/MS). The rate constant for the phenoxy radical self‐reaction was determined to be k1 = (1.49 ± 0.53) × 10−11 cm3 molecule−1 s−1 defined by d[C6H5O]/dt=−2 k1[C6H5O]2. The rate constant for the C6H5O reaction with O3 was measured to be k2 = (2.86 ± 0.35) × 10−13 cm3 molecule−1 s−1, which may be a lower limit value. Because of much higher atmospheric abundance of ozone than that of both NO and phenoxy, the reaction of C6H5O with ozone may represent the principal fate of the phenoxy radical in the atmosphere. Products from reaction of C6H5O + C6H5O, NO, and NO2 were also investigated, and (C6H5O)2 (m/e = 186), C6H5O(NO) (m/e = 123), and C6H5O(NO2) (m/e = 139) adducts were observed as products for the reactions of C6H5O with itself, NO, and NO2, respectively. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 65–72, 1999  相似文献   

2.
The reaction of C2H5O2 with NO in helium carrier gas at 295 K with [He] = 1.6 × 1017 cm?3 has been studied using a gas flow reactor sampled by a mass spectrometer. Because no parent molecular ion or suitable fragment ion produced by C2H5O2 could be detected, the reaction was followed by measuring the formation of NO2. In so doing, account had to be taken of the small amount of HO2 known to be present in the reaction mixture, which also leads to NO2 on reaction with NO. The rate coefficient for the total reaction of C2H5O2 with NO was found to be (8.9 ± 3.0) × 10?12 cm3/s, and the path which produces NO2 was found to account for at least 80% of all C2H5O2.  相似文献   

3.
The reaction between C2H5 and O2 at 295 K has been studied with a flow reactor sampled by a mass spectrometer. With helium as the carrier gas the rate coefficient was found to increase from (1.2 ± 0.3) × 10?12 to (3.6 ± 0.9) × 10?12 cm3/s as [He] was increased from 2 × 1016 to 3.4 × 1017 cm?3. The importance of has been determined from a knowledge of the initial C2H5 concentration together with a measurement of the C2H4 produced in reaction (5). F, the fraction of the C2H5 radicals removed by path (5), was found to decrease from 0.15 to 0.06 as [He] increased from 2 × 1016 to 3.4 × 1017 cm?3. The rate coefficient for reaction (5) was found to be independent of [He] and to have a value of (2.1 ± 0.5) × 10?13 cm3/s. The variation in F reflects the fact that k1b increases as [He] increases. These observations are taken as evidence for a direct mechanism for C2H4 production and a collision-stabilized route for C2H5O2 formation. Calculations indicate that the high-pressure limit for reaction (1b) is ~4.4 × 10?12 cm3/s and that in the polluted troposphere the branching ratio for reactions (1b) and (5) will be ~l20.  相似文献   

4.
Azulene, which is isomeric with naphthalene, was studied to determine whether it behaves like a polycyclic aromatic hydrocarbon or an alkene in its gas-phase reactions with OH and NO3 radicals and O3. Using relative rate methods, rate constants for the reactions of azulene with OH and NO3 radicals and O3 of (2.73 ± 0.56) × 10?10 cm3 molecule?1 s?1, (3.9) × 10?10 cm3 molecule?1 s?1, and <7 × 10?17 cm3 molecule?1 s?1, respectively, were obtained at 298 ± 2 K. The observation that the NO3 radical reaction did not involve NO2 in the rate determining step indicates that azulene behaves more like an alkene than a polycyclic aromatic hydrocarbon in this reaction. No conclusive evidence for the formation of nitroazulene(s) from either the OH or NO3 radical-initiated reaction of azulene (in the presence of NOx) was obtained.  相似文献   

5.
The kinetics and mechanisms for the unimolecular dissociation of nitrobenzene and related association reactions C(6)H(5) + NO(2) and C(6)H(5)O + NO have been studied computationally at the G2M(RCC, MP2) level of theory in conjunction with rate constant prediction with multichannel RRKM calculations. Formation of C(6)H(5) + NO(2) was found to be dominant above 850 K with its branching ratio > 0.78, whereas the formation of C(6)H(5)O + NO via the C(6)H(5)ONO intermediate was found to be competitive at lower temperatures, with its branching ratio increasing from 0.22 at 850 K to 0.97 at 500 K. The third energetically accessible channel producing C(6)H(4) + HONO was found to be uncompetitive throughout the temperature range investigated, 500-2000 K. The predicted rate constants for C(6)H(5)NO(2) --> C(6)H(5) + NO(2) and C(6)H(5)O + NO --> C(6)H(5)ONO under varying experimental conditions were found to be in good agreement with all existing experimental data. For C(6)H(5) + NO(2), the combination processes producing C(6)H(5)ONO and C(6)H(5)NO(2) are dominant at low temperature and high pressure, while the disproportionation process giving C(6)H(5)O + NO via C(6)H(5)ONO becomes competitive at low pressure and dominant at temperatures above 1000 K.  相似文献   

6.
Perfluorocarboxylic acids and their anions (PFCAs), such as perfluorooctanate (C7F15C(O)O?), have been generally recognized to be global pollutants and are believed to persist in the environment. Kinetic data for reactions of sulfate anion radicals (SO4?) with PFCAs are needed to evaluate the residence times of PFCAs in the environment, but no kinetic data have been reported, except for the rate constant for the reaction of SO4? with trifluoroacetate (CF3C(O)O?) (k1). In this study, using the fact that PFCAs react with SO4? to form shorter chain PFCAs, we determined rates relative to k1 of the reactions of photolytically generated SO4? with two short‐chain PFCAs, pentafluoropropionate (C2F5C(O)O?; k2) and heptafluorobutyrate (C3F7C(O)O?; k3), along with conversion ratios for conversion of C2F5C(O)O? into CF3C(O)O? (α) and conversion of C3F7C(O)O? into C2F5C(O)O? (β) and CF3C(O)O? (γ) at 298 K. Values of k1, k2, or k3 might change over the course of reaction with increasing ionic strength. Nevertheless, if the values of k1/k2, k2/k3, α, β, and γ remain almost constant during the reaction, a simple equation involving relative rates, such as k1/k2, can be used to relate the concentrations of C3F7C(O)O?, C2F5C(O)O?, and CF3C(O)O?. We compared the relative rates, such as k1/k2, and the conversion ratios determined from various experimental runs with different initial conditions to check whether relative rates and conversion ratios remained almost constant during each experimental run. The values of k1/k2, k2/k3, α, β, and γ seemed to remain almost constant, which facilitated determination of k2/k1 = 0.89 ± 0.07, k3/k1 = 0.84 ± 0.08, α = 0.88 ± 0.05, β = 0.75 ± 0.05, and γ = 0.17 ± 0.02. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 276–288, 2007  相似文献   

7.
The rate coefficients for the gas-phase reactions of C2H5O2 and n-C3H7O2 radicals with NO have been measured over the temperature range of (201–403) K using chemical ionization mass spectrometric detection of the peroxy radical. The alkyl peroxy radicals were generated by reacting alkyl radicals with O2, where the alkyl radicals were produced through the pyrolysis of a larger alkyl nitrite. In some cases C2H5 radicals were generated through the dissociation of iodoethane in a low-power radio frequency discharge. The discharge source was also tested for the i-C3H7O2 + NO reaction, yielding k298 K = (9.1 ± 1.5) × 10−12 cm3 molecule−1 s−1, in excellent agreement with our previous determination. The temperature dependent rate coefficients were found to be k(T) = (2.6 ± 0.4) × 10−12 exp{(380 ± 70)/T} cm3 molecule−1 s−1 and k(T) = (2.9 ± 0.5) × 10−12 exp{(350 ± 60)/T} cm3 molecule−1 s−1 for the reactions of C2H5O2 and n-C3H7O2 radicals with NO, respectively. The rate coefficients at 298 K derived from these Arrhenius expressions are k = (9.3 ± 1.6) × 10−12 cm3 molecule−1 s−1 for C2H5O2 radicals and k = (9.4 ± 1.6) × 10−12 cm3 molecule−1 s−1 for n-C3H7O2 radicals. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Kinetics for the reactions of OBrO with NO, O3, OClO, and ClO at 240–350 K were investigated using the technique of discharge flow coupled with mass spectrometry. The Arrhenius expression for the OBrO reaction with NO was determined to be k1 = (2.37 ± 0.96) × 10?13 exp[(607 ± 63)/T] cm3 molecule?1 s?1. The reactions of OBrO with O3, OClO, and ClO are slow chemical processes at 240–350 K. Upper limit rate constants for the OBrO reactions with O3, OClO, and ClO at 240–350 K were estimated to be k2 < 5.0 × 10?15 cm3 molecule?1 s?1, k3 < 6.0 × 10?14 cm3 molecule?1 s?1, and k4 < 1.5 × 10?13 cm3 molecule?1 s?1, respectively. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 430–437, 2002  相似文献   

9.
The kinetics of the C2H5 + Cl2, n‐C3H7 + Cl2, and n‐C4H9 + Cl2 reactions has been studied at temperatures between 190 and 360 K using laser photolysis/photoionization mass spectrometry. Decays of radical concentrations have been monitored in time‐resolved measurements to obtain reaction rate coefficients under pseudo‐first‐order conditions. The bimolecular rate coefficients of all three reactions are independent of the helium bath gas pressure within the experimental range (0.5–5 Torr) and are found to depend on the temperature as follows (ranges are given in parenthesis): k(C2H5 + Cl2) = (1.45 ± 0.04) × 10?11 (T/300 K)?1.73 ± 0.09 cm3 molecule?1 s?1 (190–359 K), k(n‐C3H7 + Cl2) = (1.88 ± 0.06) × 10?11 (T/300 K)?1.57 ± 0.14 cm3 molecule?1 s?1 (204–363 K), and k(n‐C4H9 + Cl2) = (2.21 ± 0.07) × 10?11 (T/300 K)?2.38 ± 0.14 cm3 molecule?1 s?1 (202–359 K), with the uncertainties given as one‐standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are ±20%. Current results are generally in good agreement with previous experiments. However, one former measurement for the bimolecular rate coefficient of C2H5 + Cl2 reaction, derived at 298 K using the very low pressure reactor method, is significantly lower than obtained in this work and in previous determinations. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 614–619, 2007  相似文献   

10.
The rate constant for the reactions of atomic chlorine with 1,4‐dioxane (k1), cyclohexane (k2), cyclohexane‐d12(k3), and n‐octane (k4) has been determined at 240–340 K using the relative rate/discharge fast flow/mass spectrometer (RR/DF/MS) technique developed in our laboratory. Essentially, no temperature dependence for these reactions was observed over this temperature range, with an average of k1 = (1.91 ± 0.20) × 10?10 cm3 molecule?1 s?1, k2 = (2.91 ± 0.31) × 10?10 cm3 molecule?1 s?1, k3 = (2.73 ± 0.30) × 10?10 cm3 molecule?1 s?1, and k4 = (3.22 ± 0.36) × 10?10 cm3 molecule?1 s?1, respectively. The kinetic isotope effect of the reaction of cyclohexane with atomic chlorine has also been determined to be 1.14 by directly monitoring the decay of both cyclohexane and cyclohexane‐d12 in the presence of chlorine atoms, which is consistent with the literature value of 1.20. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 386–398, 2006  相似文献   

11.
The rate constants of the reactions of ethoxy (C2H5O), i‐propoxy (i‐C3H7O) and n‐propoxy (n‐C3H7O) radicals with O2 and NO have been measured as a function of temperature. Radicals have been generated by laser photolysis from the appropriate alkyl nitrite and have been detected by laser‐induced fluorescence. The following Arrhenius expressions have been determined: (R1) C2H5O + O2 → products k1 = (2.4 ± 0.9) × 10−14 exp(−2.7 ± 1.0 kJmol−1/RT) cm3 s−1 295K < T < 354K p = 100 Torr (R2) i‐C3H7O + O2 → products k2 = (1.6 ± 0.2) × 10−14 exp(−2.2 ± 0.2 kJmol−1/RT) cm3 s−1 288K < T < 364K p = 50–200 Torr (R3) n‐C3H7O + O2 → products k3 = (2.5 ± 0.5) × 10−14 exp(−2.0 ± 0.5 kJmol−1/RT) cm3 s−1 289K < T < 381K p = 30–100 Torr (R4) C2H5O + NO → products k4 = (2.0 ± 0.7) × 10−11 exp(0.6 ± 0.4 kJmol−1/RT) cm3 s−1 286K < T < 388K p = 30–500 Torr (R5) i‐C3H7O + NO → products k5 = (8.9 ± 0.2) × 10−12 exp(3.3 ± 0.5 kJmol−1/RT) cm3 s−1 286K < T < 389K p = 30–500 Torr (R6) n‐C3H7O + NO → products k6 = (1.2 ± 0.2) × 10−11 exp(2.9 ± 0.4 kJmol−1/RT) cm3s−1 289K < T < 380K p = 30–100 Torr All reactions have been found independent of total pressure between 30 and 500 Torr within the experimental error. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 860–866, 1999  相似文献   

12.
The reactions of Cl and Br atoms with H2O2 have been studied in the range of 300–350 K using the very-low-pressure-reactor technique. It was found that metathesis to produce HX and HO2 is the only significant process (≤99%). For the reaction of Br k2 (300 K) = 1.3 ± 0.45 × 10?14 and k2 (350 K) = 3.75 ± 1.1 × 10?14 cm3/molecules·s, with an activation energy of 4.6 ± 0.7 kcal/mol. Using an estimated A factor for A2, we find suggesting that a best choice is E2 = 3.9 ± 0.4 kcal/mol. The relation of these values to ΔH (HO2) is discussed.  相似文献   

13.
Rate constants for the reactions of OH and NO3 radicals with CH2?CHF (k1 and k4), CH2?CF2 (k2 and k5), and CHF?CF2 (k3 and k6) were determined by means of a relative rate method. The rate constants for OH radical reactions at 253–328 K were k1 = (1.20 ± 0.37) × 10?12 exp[(410 ± 90)/T], k2 = (1.51 ± 0.37) × 10?12 exp[(190 ± 70)/T], and k3 = (2.53 ± 0.60) × 10?12 exp[(340 ± 70)/T] cm3 molecule?1 s?1. The rate constants for NO3 radical reactions at 298 K were k4 = (1.78 ± 0.12) × 10?16 (CH2?CHF), k5 = (1.23 ± 0.02) × 10?16 (CH2?CF2), and k6 = (1.86 ± 0.09) × 10?16 (CHF?CF2) cm3 molecule?1 s?1. The rate constants for O3 reactions with CH2?CHF (k7), CH2?CF2 (k8), and CHF?CF2 (k9) were determined by means of an absolute rate method: k7 = (1.52 ± 0.22) × 10?15 exp[?(2280 ± 40)/T], k8 = (4.91 ± 2.30) × 10?16 exp[?(3360 ± 130)/T], and k9 = (5.70 ± 4.04) × 10?16 exp[?(2580 ± 200)/T] cm3 molecule?1 s?1 at 236–308 K. The errors reported are ±2 standard deviations and represent precision only. The tropospheric lifetimes of CH2?CHF, CH2?CF2, and CHF?CF2 with respect to reaction with OH radicals, NO3 radicals, and O3 were calculated to be 2.3, 4.4, and 1.6 days, respectively. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 619–628, 2010  相似文献   

14.
The rate of disappearance of C2N2 in the presence of a large excess of H atoms has been measured in a discharge-flow system at pressures near 1 torr and temperatures in the range of 282–338 K. Under these conditions the reaction has a small negative temperature coefficient. A transition from second-order to third-order kinetics with decreasing pressure occurs at pressures near 1 torr. The results are discussed in terms of the mechanism where k7 = (1.5 ± 0.2) × 10–15 cm3/molec1·sec is found for the forward rate of reaction (7). The results also give k7k8/k?7 = 3.7 × 10?31 cm6/molec2·sec and k7k9/k?7 = 3.0 × 10?32 cm6/molec2·sec, the first being probably an upper limit and the second probably a lower limit; hence k8/k9 = 12 is found as an upper limit.  相似文献   

15.
In order to elucidate the structure of the Ziegler-Natta polymerization center, we have carried out some kinetic studies on the polymerization of propylene with active TiCl3—Zn(C2H5)2 in the temperature range of 25–56°C. and the Zn(C2H5)2 concentration range of 4 × 10?3–8 × 10?2 mole/1., and compared the results with those obtained with active TiCl3—Al(C2H5)3. The following differences were found: (1) the activation energy of the stationary rate of polymerization is 6.5 kcal/mole with Zn(C2H5)2 and 13.8 kcal./mole with Al(C2H5)3; (2) the growth rate of the polymer chains with Zn(C2H5)2 is about times slower at 43.5°C.; and (3) the polymerization centers formed with Zn(C2H5)2 are more unstable. It can be concluded that the structure of the polymerization center with Zn(C2H5)2 is different from that with Al(C2H5)3.  相似文献   

16.
In the present work, phenylperoxy radicals were generated by stationary 254 nm photolysis of iodobenzene and nitrosobenzene in the presence of O(2) and NO(2) at 298 K and a total pressure of 1 bar (M = N(2)). Experiments were performed on time scales of seconds or minutes in a temperature controlled photoreactor made of quartz (v = 209 L). Major gas phase products identified and quantified in situ by long-path IR absorption include N(2)O(5), NO, HONO, HNO(3), CO, and o-nitrophenol. In addition, evidence is presented for the formation of an aerosol consisting of p-nitrophenol. The occurrence of N(2)O(5) as a major product in both reaction systems, the strong loss of NO(2) in the iodobenzene system and the comparison of measured product distributions with the results of numerical model calculations suggest that the reaction C(6)H(5)O(2) + NO(2) --> C(6)H(5)O + NO(3), k(5)occurs in both photolysis systems, a major part of the NO(3) being scavenged as N(2)O(5). The results of ab initio calculations imply that proceeds via a short-lived peroxynitrate intermediate. In the photolysis of nitrosobenzene-NO(2)-O(2)-N(2) mixtures, NO and NO(2) compete for C(6)H(5)O(2) radicals. Comparison of measured and modelled product distributions allows to set a lower limit of k(5) > 1 x 10(-12) cm(3) molecule(-1) s(-1) at 298 K. This lower limit is consistent with the assumption that k(5) is equal to the high pressure recombination rate constant of RO(2) + NO(2) --> RO(2)NO(2) reactions, i.e. with k(5) approximately 7 x 10(-12) cm(3) molecule(-1) s(-1) at 298 K, 1bar.  相似文献   

17.
The gas-phase reaction of CH(X2 Π) radicals with molecular nitrogen was studied in the temperature range 298–1059 K at total pressures between 10 and 620 torr. CH radicals were generated by excimer laser photolysis of CHCIBr2 at 248 nm and were detected by laser-induced fluorescence. The investigated reaction shows a strong temperature and pressure dependence. At pressures of 20, 100, and 620 torr the Arrhenius plots exhibit a strong decrease of the rate constant with increasing temperature. The rate constant is well described by, with E0 in kJ/mol. The pressure dependence was studied at temperatures of 298, 410, 561, and 750 K. The rate constants for each temperature were fitted by the Troe formalism. From the calculated values of k0 and kinfinity, the Arrhenius expressions, were obtained with E0 (k0) and EA (kinfinity) in units of kJ/mol. Within the range of 298–750 K the temperature dependence of the broadening factor is well described by Fc = 0.029 + (173.3/T). © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Rate constants for the reactions of O3 and OH radicals with furan and thiophene have been determined at 298 ± 2 K. The rate constants obtained for the O3 reactions were (2.42 ± 0.28) × 10?18 cm3/molec·s for furan and <6 ×10?20 cm3/molec·s for thiophene. The rate constants for the OH radical reactions, relative to a rate constant for the reaction of OH radicals with n-hexane of (5.70 ± 0.09) × 10?12 cm3/molec·s, were determined to be (4.01 ± 0.30) × 10?11 cm3/molec·s for furan and (9.58 ± 0.38) × 10?12 cm3/molec·s for thiophene. There are to date no reported rate constant data for the reactions of OH radicals with furan and thiophene or for the reaction of O3 with furan. The data are compared and discussed with respect to those for other alkenes, dialkenes, and heteroatom containing organics.  相似文献   

19.
Pulse radiolysis was used to study the kinetics of the reactions of CH3C(O)CH2O2 radicals with NO and NO2 at 295 K. By monitoring the rate of formation and decay of NO2 using its absorption at 400 and 450 nm the rate constants k(CH3C(O)CH2O2+NO)=(8±2)×10−12 and k(CH3C(O)CH2O2+NO2)=(6.4±0.6)×10−12 cm3 molecule−1 s−1 were determined. Long path length Fourier transform infrared spectrometers were used to investigate the IR spectrum and thermal stability of the peroxynitrate, CH3C(O)CH2O2NO2. A value of k−6≈3 s−1 was determined for the rate of thermal decomposition of CH3C(O)CH2O2NO2 in 700 torr total pressure of O2 diluent at 295 K. When combined with lower temperature studies (250–275 K) a decomposition rate of k−6=1.9×1016 exp (−10830/T) s−1 is determined. Density functional theory was used to calculate the IR spectrum of CH3C(O)CH2O2NO2. Finally, the rate constants for reactions of the CH3C(O)CH2 radical with NO and NO2 were determined to be k(CH3C(O)CH2+NO)=(2.6±0.3)×10−11 and k(CH3C(O)CH2+NO2)=(1.6±0.4)×10−11 cm3 molecule−1 s−1. The results are discussed in the context of the atmospheric chemistry of acetone and the long range atmospheric transport of NOx. © John Wiley & Sons, Inc. Int J Chem Kinet: 30: 475–489, 1998  相似文献   

20.
A flash photolysis–resonance fluorescence technique was used to investigate the kinetics of the OH(X2Π) radical and O(3P) atom‐initiated reactions with CHI3 and the kinetics of the O(3P) atom‐initiated reaction with C2H5I. The reactions of the O(3P) atom with CHI3 and C2H5I were studied over the temperature range of 296 to 373 K in 14 Torr of helium, and the reaction of the OH (X2Π) radical with CHI3 was studied at T = 298 K in 186 Torr of helium. The experiments involved time‐resolved resonance fluorescence detection of OH (A2Σ+ → X2Π transition at λ = 308 nm) and of O(3P) (λ = 130.2, 130.5, and 130.6 nm) following flash photolysis of the H2O/He, H2O/CHI3/He, O3/He, and O3/C2H5I/He mixtures. A xenon vacuum UV (VUV) flash lamp (λ > 120 nm) served as a photolysis light source. The OH radicals were produced by the VUV flash photolysis of water, and the O(3P) atoms were produced by the VUV flash photolysis of ozone. Decays of OH radicals and O(3P) atoms in the presence of CHI3 and C2H5I were observed to be exponential, and the decay rates were found to be linearly dependent on the CHI3 and C2H5I concentrations. Measured rate coefficients for the reaction of O(3P) atoms with CHI3 and C2H5I are described by the following Arrhenius expressions (units are cm3 s?1): kO+C2H5I(T) = (17.2 ± 7.4) × 10?12 exp[?(190 ± 140)K/T] and kO+CHI3(T) = (1.80 ± 2.70) × 10?12 exp[?(440 ± 500)K/T]; the 298 K rate coefficient for the reaction of the OH radical with CHI3 is kOH+CHI3(298 K) = (1.65 ± 0.06) × 10?11 cm3 s?1. The listed uncertainty values of the Arrhenius parameters are 2σ‐standard errors of the calculated slopes by linear regression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号