首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
《先进技术聚合物》2018,29(5):1507-1517
Water‐induced mechanically adaptive rubber nanocomposites were prepared by mixing bacterial cellulose whiskers (BCWs) suspension with styrene‐butadiene rubber (SBR) latex, followed by evaporation method. The structure, morphology, dynamic mechanical properties, water stimuli‐responsive behavior, and biodegradability of SBR/BCWs nanocomposite films were investigated. The results showed that the hydrophilic whiskers had a significant reinforcement effect on the storage modulus of SBR matrix, which originated from the formation of a rigid three‐dimensional filler network within matrix by strong hydrogen bonding between whiskers. The SBR/BCWs nanocomposites showed pronounced water stimuli‐responsive behavior compared with neat SBR. The storage modulus of SBR/BCWs nanocomposite could be decreased by 99.2% after equilibrium water swelling. This remarkable water‐triggered modulus change is attributed to the disentanglement of BCWs network via competitive hydrogen bonding with water.  相似文献   

2.
Polymer nanocomposites were prepared from poly(oxyethylene) PEO as the matrix and high aspect ratio cellulose whiskers as the reinforcing phase. Nanocomposite films were obtained either by extrusion or by casting/evaporation process. Resulting films were characterized using microscopies, differential scanning calorimetry, thermogravimetry and mechanical and rheological analyses. A thermal stabilization of the modulus of the cast/evaporated nanocomposite films for temperatures higher than the PEO melting temperature was reported. This behavior was ascribed to the formation of a rigid cellulosic network within the matrix. The rheological characterization showed that nanocomposite films have the typical behavior of solid materials. For extruded films, the reinforcing effect of whiskers is dramatically reduced, suggesting the absence of a strong mechanical network or at least, the presence of a weak whiskers percolating network. Rheological, mechanical and microscopy studies were involved in order to explain this behavior.  相似文献   

3.
Whiskers of poly(4-hydroxybenzoate) [poly(4-HBA)] were prepared by polycondensation of free 4-hydroxybenzoic acid with acetic anhydride and pyridine in a high boiling inert solvent. The purity of the monomer is decisive for the success of the synthesis. For a less pure 4-hydroxybenzoic acid, the preparation of acetylated oligomers with acetylchloride, followed by polycondensation of the isolated oligomers is a suitable alternative. Whiskers, with a solid-solid phase transition at 364°C were obtained, which is the highest temperature reported for this transition so far. Two batches of composites were prepared from nylon-6 using polyester whiskers with an alkaline or an acidic surface treatment. A third batch was prepared using poly(ester-amide) whiskers. The mechanical properties of these composites indicate that the surface treatment does not play any role, and that the poly(esteramide)s are inferior to the polyester whiskers, because they are not single crystals. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
Hydrogels are finding increasingly broad use, especially in biomedical applications. Their complex structure – a low-density network of microfibrils – defines their non-trivial mechanical behaviour. The focus of this work is on test-based quantification of mechanical behaviour of a bacterial cellulose (BC) hydrogel exposed to cyclic loading. Specimens for the tests were produced using Gluconacetobacter xylinus ATCC 53582 and tested in aqua under uniaxial cyclic loading conditions in a displacement-controlled regime. Substantial microstructural changes were observed in the process of deformation. A combination of qualitative microstructural observations with quantitative force-displacement relations allowed identification of main deformation mechanisms, confirming inelastic behaviour of the BC hydrogel under a loading-unloading-reloading regime. Elastic deformation was accompanied by non-elastic (viscoplastic) deformation in both tension and compression. This study also aims to establish a background for micromechanical modelling of overall properties of BC hydrogels.  相似文献   

5.
In a previous article, the processing of nanocomposite materials of plasticized poly(vinyl chloride) (pPVC) reinforced by cellulose crystalline whiskers was presented as well as preliminary dynamic mechanical measurements. The purpose of the present work is to evaluate the possible change of molecular dynamic of poly(vinyl chloride (PVC) at the interface with cellulose whiskers. The analysis, based on the quasi‐point defect (qpd) theory for the anelastic deformation of amorphous polymer, confirms that PVC is heterogeneous. Thus, the matrix is described as a parallel assembly of phases with different plasticizer concentration (i.e., different glass transition temperature). It is shown that the whiskers do not lead to supplementary relaxation in the matrix, at least in the time–temperature window of the study, but, the satisfying modeling of the composite supports the assumption of a thin layer of immobilized phase around the whiskers. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2151–2164, 1999  相似文献   

6.
An important element in the microstructure of high performance fibers and films fabricated from rigid polymers is an interconnected network of oriented microfibrils, the lateral size of which is about 10 nm. This study is an attempt to elucidate the mechanism by which the microfibrils are formed so that larger lateral dimensions can be achieved by suitable processing. Because this morphology emerges in the coagulation stage of the spinning process, we compared the microfibrillar network formed by drastically different coagulation conditions. Ribbons, spun from solution of poly(p‐phenylene benzobisthiazole) in polyphosphoric acid through a slit die, were coagulated either in the ordinary rapid process with water (timescale of seconds) or in a slow process with phosphoric acid (timescale of hours). The coagulated microfibrillar network was dried with supercritical CO2 for X‐ray scattering measurements and impregnated with epoxy resin for sectioning and imaging by TEM. Slow coagulation yields better‐aligned microfibrils of enhanced chain packing, but the lateral size of the microfibrils formed in both cases is similar, about 10 nm. Heat treatment increases the width of water‐coagulated microfibrils but not the acid‐coagulated ones. The observations do not support spinodal decomposition as the mechanism of microfibril formation during coagulation, as was previously suggested. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1087–1094, 2002  相似文献   

7.
The objective of this work was to find a rapid, high-yield process to obtain an aqueous stable colloid suspension of cellulose nanocrystals/whiskers. Large quantities are required since these whiskers are designed to be extruded into polymers in the production of nano-biocomposites. Microcrystalline cellulose (MCC), derived from Norway spruce (Picea abies), was used as the starting material. The processing parameters have been optimized by using response surface methodology. The factors that varied during the process were the concentration of MCC and sulfuric acid, the hydrolysis time and temperature, and the ultrasonic treatment time. Responses measured were the median size of the cellulose particles/whiskers and yield. The surface charge as calculated from conductometric titration, microscopic examinations (optical and transmission electron microscopy), and observation of birefringence were also investigated in order to determine the outcome (efficiency) of the process. With a sulfuric acid concentration of 63.5% (w/w), it was possible to obtain cellulose nanocrystals/whiskers with a length between 200 and 400 nm and a width less than 10 nm in approximately 2 h with a yield of 30% (of initial weight).  相似文献   

8.
The drying process in typical pulp production generates strong hydrogen bonding between cellulose microfibrils in refined cell walls and increases the difficulty in obtaining uniform cellulose nanofibers. To investigate the efficacy of alkaline treatment for cellulose nanofibrillation, this study applied a bead-milling method in NaOH solutions for the nanofibrillation of dried pulps. NaOH treatments loosened the hydrogen bonding between cellulose microfibrils in dried pulps and allowed preparation of cellulose nanofibers in 8 % NaOH with a width of approximately 12–20 nm and a cellulose I crystal form. Both the nanofiber suspensions prepared in 8 and 16 % (w/w) NaOH were formed into hydrogels by neutralization because of surface entanglement and/or interdigitation between the nanofibers. When the dried pulp was fibrillated in 16 % (w/w) NaOH, the sample after neutralization had a uniquely integrated continuous network. These results can be applied to the preparation of high-strength films and fibers with cellulose I crystal forms without prior dissolution of pulps.  相似文献   

9.
This study reports on the in situ characterization of the deformation mechanisms at room temperature of polyamide 6 (PA6) fibers filled with hyperbranched molecules or montmorillonite (MMT) platelets. A small‐angle X‐ray scattering study shows that the stretching and sliding of the microfibrils takes place concomitantly in the first stage of elastic loading of as‐spun and partially drawn fibers. In the second stage of loading, which is basically plastic, sliding turns out to be the main process of deformation, accompanied by a significant reduction in the microfibril radius. Fibers drawn close to their maximum draw ratio only display the deformation process of microfibril stretching. This in situ study also reveals subtle features of the reversible processes of deformation that could not be detected from ex situ experiments reported previously. A thickening of the crystal blocks in the microfibrils takes place under stress and disappears upon unloading, indicating that some reversible strain‐induced molecular ordering occurs in the amorphous layers close to the crystal surface. The tentative mechanical modeling enabled a characterization of the components of the fibers: the stiffness of the microfibrils appears to be insensitive to the presence of the particles that are excluded in the interfibrillar regions. The presence of HB molecules clearly increases the stiffness of the interfibrillar regions owing to a physical crosslinking effect. Moreover, it seems that the stiffness improvement of the drawn MMT‐PA6 fiber lies in a greater capability of chain unfolding in the interfibrillar amorphous region. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2633–2648, 2004  相似文献   

10.
Boron nitride whiskers with a special structure have been synthesized by a thermal reaction process. The as-prepared BN whiskers have a length of tens of micrometers and a mean diameter of 500 nm. High-resolution TEM analysis shows that the as-prepared BN whiskers can be described as a nanofiber-interweaved network. Infrared and electron energy loss spectra reveal that the BN whiskers are composed of both sigma-sp2 and sigma-sp3 chemical bonds. The UV-vis absorption spectrum displays the energy band gap of the BN whiskers and multiple fine absorption peaks of the phonon-electron coupling. Both photoluminescence (PL) and cathodoluminescence (CL) measurements show the specially structured BN emits strong UV and visible luminescences, which is a promising material for deep-blue and UV applications.  相似文献   

11.
采用溶胶-凝胶法制备了硅铝混合凝胶粉体, 再通过熔盐反应在堇青石陶瓷基体上生长莫来石晶须, 制得莫来石晶须/堇青石表面层微结构. 表征结果表明, 莫来石晶须紧密生长在堇青石基体上, 晶须直径为100~300 nm, 长度可达几个微米. 莫来石晶须表面含有大量Si—OH和Al—OH极性亲水基团, 采用十二烷基三甲氧基硅烷与活性基团间的偶联反应将非极性基团引入莫来石晶须表面, 获得了静态润湿角为146°的莫来石晶须/堇青石表面层. 动态润湿研究表明, 合成的莫来石晶须增大了堇青石陶瓷的表面粗糙度, 使亲水的莫来石晶须/堇青石表面更加亲水, 而硅烷偶联剂修饰的堇青石/莫来石晶须表面则成为准超疏水表面.  相似文献   

12.
Latex films involve polymers, copolymers and (or) polymer blends, with more or less complex morphologies. First of all, the mechanical behavior of their amorphous polymeric component is considered. A theoretical approach, which relates macroscopic behavior to molecular processes, is used to model its dynamic mechanical properties and also plastic behavior. Then, in the case of heterogeneous films, we propose that information about the morphology of samples can be deduced from a comparison of their measured viscoelastic properties with the corresponding properties calculated for a suitable model. After a brief review of the theoretical approaches for the mechanical behavior of multiphase systems, we show the validity of the procedure in the case of latex films obtained from different copolymerization pathways. Thus, it is possible (a) to get information about the morphology of binary systems, (b) to determine the stability of the morphology, and (c) to characterize a third phase as an interphase between nodules and matrix. High stress–strain behavior is discussed in the case of latex films reinforced with nanoparticles of silica or with cellulose whiskers.  相似文献   

13.
The quintessential form of cellulose in wood consists of microfibrils that have high aspect ratio crystalline domains embedded within an amorphous cellulose domain. In this study, we apply united-atom molecular dynamics simulations to quantify changes in different morphologies of cellulose. We compare the structure of crystalline cellulose with paracrystalline and amorphous phases that are both obtained by high temperature equilibration followed by quenching at room temperature. Our study reveals that the paracrystalline phase may be an intermediate, kinetically arrested phase formed upon amorphisation of crystalline cellulose. The quenched structures yield isotropic amorphous polymer domains consistent with experimental results, thereby validating a new computational protocol for achieving amorphous cellulose structure. The non-crystalline cellulose compared to crystalline structure is characterized by a dramatic decrease in elastic modulus, thermal expansion coefficient, bond energies, and number of hydrogen bonds. Analysis of the lattice parameters shows that Iβ cellulose undergoes a phase transition into high-temperature phase in the range of 450–550 K. The mechanisms of the phase transition elucidated here present an atomistic view of the temperature dependent dynamic structure and mechanical properties of cellulose. The paracrystalline state of cellulose exhibits intermediate mechanical properties, between crystalline and amorphous phases, that can be assigned to the physical properties of the interphase regions between crystalline and amorphous cellulose in wood microfibrils. Our results suggest an atomistic structural view of amorphous cellulose which is consistent with experimental data available up to date and provide a basis for future multi-scale models for wood microfibrils and all-cellulose nanocomposites.  相似文献   

14.
Bacterial cellulose (BC) is a promising biomaterial as well as a model system useful for investigating cellulose biosynthesis. BC produced under static cultivation condition is a hydrous pellicle consisting of an interconnected network of fibrils assembled in numerous dense layers. The mechanisms responsible for this layered BC assembly remain unknown. This study used calcofluor as a fluorescent marker to examine BC layer formation at the air/liquid interface. Layers are found to move downward into the media after formation while new layers continue to form at the air/liquid interface. Calcoflour is also known to reduce the crystallinity of cellulose, changing the mechanical properties of the formed BC microfibrils. Consecutive addition and accumulation of calcofluor in the culture medium is found to disrupt the layered assembly of BC. BC crystalllinity decreased by 22 % in the presence of 12 % calcofluor (v/v) in the medium as compared to BC produced without calcofluor. This result suggests that cellulose crystallinity and the mechanical properties which crystallinity provides to cellulose are major factors influencing the layered BC structure formed during biosynthesis.  相似文献   

15.
Structural changes in never- dried, disintegrated bacteria l cellulose by treatment with aqueous NaOH were examined by electron microscopy, X-ray diffractometry and acid hydrolysis behaviour and compared with those of cotton cellulose. The microfibril kept its fibrillar morphology after treatment with NaOH solutions of less than 9% (w/w), but changed into irregular aggregates when treated with NaOH above 12% (w/w), corresponding to the crystal conversion to cellulose II. The crystallinity of the resulting cellulose II was very low after a brief alkali treatment, but was increased significantly by elongated treatment (up to 10 days). In contrast, cotton cellulose was converted to cellulose II of fairly high crystallinity by alkali treatment of as little as 3 min duration, and the crystallinity did not change with longer treatments. The leveling-off degree of polymerization (LODP) of bacterial cellulose was decreased from 150 to 50 by 18% (w/w) NaOH treatment, while that of cotton linter decreased from 260 to 70. These characteristic differences between cotton linter cellulose and bacterial cellulose can be ascribed to a basic difference in microfibrillar organization in these materials: the microfibrils in cotton cellulose are in close contact with neighbouring microfibrils having opposite polarity, and in bacterial cellulose are isolated from each other and require chain folding to form the antiparallel cellulose II crystal  相似文献   

16.
Cellulose microfibrils have been prepared from banana rachis using a combination of chemical and mechanical treatments. The morphology and structure of the samples were characterized using transmission electron microscopy, atomic force microscopy, and X-ray diffraction. Fourier-transformed infrared spectroscopy (FTIR) was used to characterize the chemical modifications of the samples after each treatment. Suspensions of bundled or individualized 5-nm-wide microfibrils were obtained after homogenization (PH) whereas an organosolv (PO) treatment resulted in shorter aggregates of parallel cellulose microcrystallites. The sharper rings in the X-ray diffraction pattern of the PO-treated sample suggest a higher crystallinity due to a more efficient removal of hemicelluloses and dissolution of amorphous zones by the acid treatment. Both microfibrils and microcrystals prepared by both methods can be used as reinforcing filler in nanocomposite materials.  相似文献   

17.
This article is concerned with molecular orientation in liquid crystal (LC) monomers and the retention of orientation in crosslinked network polymers formed from them by photopolymerization. This is of importance because anisotropic mechanical and physical properties can be beneficial in certain structural applications. To this end, linear viscoelastic behavior of liquid crystal photo-monomers was investigated with dynamic mechanical analysis, and molecular order was studied by infrared dichroism measured with Fourier transform infrared spectroscopy. Although the order parameter of the monomer could vary from 0.45 to 0.70, depending on temperature, the order parameters of the polymer samples varied only from 0.50 to 0.62 and depended on polymerization temperature and extent of cure. The mechanical anisotropy was found to be a complicated phenomenon that depended not only on the molecular order, but also on other factors such as free volume and network structure. The difference in the elastic modulus parallel and perpendicular to the alignment direction was as high as a factor of two in the glassy state, and a factor of three above Tg. In addition, different amounts of mechanical anisotropy could be induced by varying the cure conditions. Finally, different postcuring schemes could cause variations in mechanical behavior by advancing cure or by inducing secondary reactions. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1081–1089, 1998  相似文献   

18.
The chemical composition and morphology of Syngonanthus nitens (Capim Dourado) fibers were investigated. An unusual low lignin content and high holocellulose content have been observed. High aspect ratio cellulose whiskers were prepared from these lignocellulosic fibers by an acid hydrolysis treatment. The average diameter and length were 4.5 nm and 300 nm, respectively, giving rise to an aspect ratio around 67. Natural Rubber nanocomposite films reinforced with cellulose whiskers extracted from capim dourado were prepared by film casting. The mechanical properties of the ensuing nanocomposite films were investigated in both the linear and the non-linear range using dynamical mechanical analysis and tensile tests, respectively. The reinforcing effect observed above the glass transition temperature of the matrix was higher than the one observed for other polysaccharide nanocrystals and cellulose whiskers extracted from other sources.  相似文献   

19.
Three network structure polymers formed by the chemical reactions of a triepoxide with aniline, 3-chloroaniline,and 4-chloroaniline were prepared and their shear modulus relaxation spectra studied over the 10−3- to 1-Hz range and temperatures up to their rubber modulus region. The decrease in the unrelaxed modulus with increase in temperature is found to be a reflection of both an increase in volume, and a decrease in the relaxed modulus of the sub-Tg relaxations process. It is quantitatively shown that the increase in the rubber modulus with increase in temperature above Tg is predominantly due to an increase in the entropy and not to a decrease in the number of cross-links density on thermal expansion. The unrelaxed modulus remained unaffected by the change in the overall size of the phenyl groups of the amines and of the steric hindrance to their rotations caused by the proximity of the chlorine atom to the cross-linking N-atom in the network structure, but the rubber modulus was effected. The shear modulus spectra could be fitted to a stretched exponential decay function with a temperature-independent stretch parameter of 0.25 for two polymers and 0.22 for one. The time–temperature superposition of the spectra did not yield a master curve, and a vertical displacement of the data also failed to produce it. This was more clearly demonstrated by the spectra of the mechanical loss tangent. After considering the various contributions to the shear modulus, it was concluded that deviations from the time–temperature superposition of the spectra are intrinsic to these polymers and arise from the change in the viscoelastic functions for segmental dynamics on change in the temperature such that the overall distribution of relaxation times remains unaffected. The mechanical loss tangent of the three polymers is found to be higher than that of polycarbonate at ambient temperature, implying a higher loss of mechanical energy before these polymers may fracture. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3071–3083, 1999  相似文献   

20.
Environmentally-friendly SPI/cellulose whisker composites were successfully prepared using a colloidal suspension of cellulose whiskers, to reinforce soy protein isolate (SPI) plastics. The cellulose whiskers, having an average length of 1.2 microm and diameter of 90 nm, respectively, were prepared from cotton linter pulp by hydrolyzing with sulfuric acid aqueous solution. The effects of the whisker content on the morphology and properties of the glycerol-plasticized SPI composites were investigated by scanning electron microscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, ultraviolet-visible spectroscopy, water-resistivity testing and tensile testing. The results indicated that, with the addition of 0 to 30 wt.-% of cellulose whiskers, strong interactions occurred both between the whiskers and between the filler and the SPI matrix, reinforcing the composites and preserving their biodegradability. Both the tensile strength and Young's modulus of the SPI/cellulose whisker composites increased from 5.8 to 8.1 MPa and from 44.7 to 133.2 MPa, respectively, at a relative humidity of 43%, following an increase of the whisker content from 0 to 30 wt.-%. Furthermore, the incorporation of the cellulose whiskers into the SPI matrix led to an improvement in the water resistance for the SPI-based composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号