首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemistry of Polyfunctional Molecules. 116 Hydrido-, Deuterido-, Thiolato-, and Chlororuthenium(II) Complexes of Bis(diphenylphosphino)amine Bis(diphenylphosphino)amine, [(C6H5)2P]2NH (dppa, 1 ), reacts with [Ru(cod)(cot)] (cod = η-1,5-cyclooctadiene, cot = η-1,3,5-cyclooctatriene) ( 2 ) in a molar ratio of 2 : 1 both in a hydrogen or deuterium atmosphere at room temperature to yield cis-[Ru(H)2(dppa)2] ( 3 ) and cis-[Ru(D)2(dppa)2] ( 3 a ), respectively. The dihydride complex 3 is very sensitive towards halogenated solvents: dissolution of 3 in CHCl3 or CH2Cl2 produces the monohydride compound trans-[RuCl(H)(dppa)2] ( 4 ). Treatment of 3 with a threefold excess of tert-butyl mercaptane, Me3CSH, at room temperature results in the formation of cis-[Ru(H)(SCMe3)(dppa)2] ( 5 ). Trans-[RuCl2(dppa)2] ( 7 ) can be synthesized by the interaction of [RuCl2(PPh3)3] ( 6 ) with one or two equivalents of 1 in CH2Cl2 solution. The NMR spectra of 3, 3 a, 4, 5 and 7 are discussed with respect to molecular stereochemistry and hydrogen-halogen exchange under simultaneous cis-trans rearrangement. In addition to 1H, 2H, 31P{1H}, and 31P NMR, the structures of the different complexes were also derived from 1R, Raman, and mass spectra. The NMR spectra simulation of 3 permits detailed assignments of spin-spin coupling constants. Crystals of cis-[Ru(H)(SCMe3)(dppa)2] ( 5 ) are monoclinic, space group P21/c, with a = 1 179.9(3), b = 2 228.0(4), c = 1 854.8(6) pm, β = 96.23(2)°, Z = 4, and Rw = 0.062. The structural analysis shows that ruthenium is coordinated by two bidentate organophosphine ligands and by one tert-butyl thiolate molecule. The metal bound hydrogen atom was not located. However, in agreement with 1H NMR, its position is trans to a phosphorus nucleus.  相似文献   

2.
Chemistry of Polyfunctional Molecules. 124. Silver(I) Complexes Containing the Ligands Bis(diphenylphosphanyl)amine, -amide and Tris(diphenylphosphanyl)amine Bis(diphenylphosphanyl)amine HN(PPh2)2 ( 1 ) reacts with AgCl to the complex HN(PPh2AgCl)2 ( 5 ) for which in the solid state the cluster structure Ag4Cl4[HN(PPh2)2]2 is assumed. Reaction of 5 with LiN(PPh2)2 ( 2 ) gives the known [N(PPh2AgPh2P)2N] ( 8 ) and the new complex [Ag(μ—Ph2PNPPh2)2(μ—Ph2PNHPPh2)Ag] · dioxane ( 7 · dioxane). The compound 7 · dioxane has been characterized by X-ray diffraction. The molecules are found to contain a bicyclo[3.3.3]undecane-type structure with trigonal planar coordinated silver atoms, which are separated by 281,6(1) pm. The dioxane is bound via H-bridge bond to the NH group of the coordinated HN(PPh2)2. Treatment of 8 with ClPPh2 yields N(PPh2AgCl)3 ( 12 ), which has also been obtained by the reaction of N(PPh2)3 ( 3 ) with silver chloride. All the compounds have been characterized, so far as possible, by IR, Raman, 1H NMR, 31P{1H} NMR, 13C{1H} NMR and mass spectroscopy.  相似文献   

3.
New Alkylchlorosulfonium Salts and Crystal Structure of Diethylchlorosulfonium-Hexachloroantimonate (C2H5)2SCl+SbCl6? We describe the preparation and spectroscopic characterization of Dialkylchlorosulfonium-Hexachloroantimonates R2SCl+SbCl6? (R = C2H5, i-C3H7) and the crystal structure of Diethylchlorosulfonium-Hexachloroantimonate (C2H5)2SCl+SbCl6? at 172(1) K. The salt crystallize in the orthorhombic space group P212121 with a = 980.4(13) pm, b = 1010.6(8) pm, c = 1492.8(14) pm with four formula units per unit cell.  相似文献   

4.
Inhaltsübersicht. Diphenylphosphin und rac-Cyclophosphamid (ClCH2CH2)2NP(O)N(H)(CH2)3O (1) reagieren in Gegenwart von n-Butyllithium zu einem Zwischenprodukt, das mit Wasser das diphenylphosphinsubstituierte Cyclophosphamid, (Ph2PCH2CH2)2NP(O)N(H)(CH2)3O, (2) bildet. Metallierung von 2 mit n-BuLi am N(3)-Atom und Umsetzung mit D2O führt zum N(3)-Deuteroderivat 2a. Mit H2O2 reagiert 2 zur all-Phosphinoxid Verbindung, [Ph2P(O)CH2CH2]2NP(O)N(H)(CH2)3O, (4), die mit 0,5 Mol Wasser auskristallisiert und von der zur Charakterisierung des H-Bückenbindungssystems eine Röntgenstrukturanalyse angefertigt wurde. Die NMR-Spektren (1H, 13C, 31P, 14N) weisen 2–4 als dynamische Moleküle aus. Chemistry of Polyfunctional Molecules. 101. Synthesis of a Diphenylphosphinesubstituted Cyclophosphamide and the X-ray Diffraction of its Oxidation Product Diphenylphosphine and rac-cyclophosphamide, (ClCH2CH2)2NP(O)N(H)(CH2)3O, (1) react in the presence of n-BuLi to an intermediate which hydrolyses to the diphenylphosphine substituted Cyclophosphamide, (Ph2PCH3CH2)2NP(O)N(H)(CH2)3O, (2). Metallation of 2 with n-BuLi at the N(3) atom, followed by treatment with D2O yields the N(3)-deuterated derivative 2a. With H2O2 2 forms the all-phosphine-oxide compound, [Ph2P(O)CH2CH2]2NP(O)N(H)(CH2)3O, ( 4 ), which crystallizes with 0.5 mole of water. In order to characterize the H-bridge bonding system a X-ray structure analysis of 4 was carried out. The NMR-Spectra (1H, 13C, 31P, 14N) indicate 2–4 as dynamic molecules.  相似文献   

5.
Pseudoelement Compounds VII. [1] Crystal and Molecular Structure of Tris(ethylenediamine)nickel(II)-bis(2-methyl-4-chlorophenoxy-cyanamidoacetate) Surprisingly, in the presence of ethylenediamine 2-methyl-4-chlorphenoxy-cyanamidoactetate reacts with nickel(II) and copper(II) ions preferentially under formation of complexes of the type [M(en)3]X2. The IR spectra and the X-ray diffraction investigations corresponding to [Ni(en)3][2-Me-ClC6H3OCH2C(O)NCN]2 show that two cyanamidocarboxylate ions [RC(O)NCN]? are bonded to the complex cation through, in each case, two N? H …? O?C hydrogen bonds between NH protons of ethylenediamine ligands and the carbonyl oxygen atoms. Additionally, in the crystal weak N? H …? N?C bridges were found between the nitrile nitrogen atoms of the anions and NH protons of neighbouring complex cations.  相似文献   

6.
Summary 5-Fluoro-uracil (1) reacts with chloro-diphenylphosphane to 5-fluoro-N(1), N(3)-bis(diphenylphosphanyl)uracil (3) which was characterized by X-ray crystallography, IR, and mass spectra.19F,31P{1H},13C{1H}, and1H NMR spectra indicate that3 rearranges inTHF solution to some extent to the tautomeric 5-fluoro-O(2), O(4)-bis(diphenylphosphanyl)uracil (4). If the solvent contains traces of water, Ph2P(O)-PPh2 (6) and uracil derivatives are formed by hydrolysis.
Herrn Professor Dr.Walter Siebert zum 60. Geburtstag gewidmet.  相似文献   

7.
Chemistry of Polyfunctional Molecules. 119 [1]. Tetracarbonyl-dicobalt-tetrahedrane Complexes with the Ligands Bis(diphenylphosphanyl)-amine, 2-Butin-1,4-diol, and tert.-Butylphosphaacetylene — Crystal Structure of the Phosphaalkyne Derivative Co2(μ-CO)2(CO)4(μ-Ph2P? NH? PPh2P,P′) · 1/2C6H5CH3 ( 4 · 1/2C6H5CH3) reacts with 2-butine-1,4-diol, HOCH2? C?C? CH2OH ( 5 ), to the dark-red tetrahedrane complex Co2(CO)4(μ-η22-HOCH2? C?C? CH2OH? C2, C3) · (μ-Ph2P? NH? PPh2? P,P′) · THF (6 · THF). With t-butyl-phosphaacetylene, tBu? C?P ( 7 ), 4 · THF forms Co2(CO)4(μ-η22-tBu? C?P)(μ-Ph2P? NH? PPh2? P,P′) ( 8 ), which also belongs to the tetrahydrane type. The compounds were characterized by their mass, IR, 31P{1H} NMR, 13C{1H} NMR, and1H NMR spectra. Crystals suitable for X-ray structure analyses have been obtained for 8 from dioxane. The dark red blocks crystallize in the monoclinic P21/c space group with the lattice constants a = 1404,1(5), b = 1330,0(7), c = 2578,8(10)pm; β = 90,82(3)°.  相似文献   

8.
Inhaltsübersicht. (Ph2PCH2CH2)2N-P(O)N(H)CH2CH2CH2O ( 2 ) bildet mit cis-M(CO)4(C7H8) bzw. fac-M(CO)3(CH3CN)3 (M = Cr, Mo, W; C7H8 = Norbornadien) die Chelat-komplexe cis-M(CO)4(PPh2CH2CH2)2N-P(O)N(H)CH2CH2CH2O ( 3a–c ) bzw. fac-M(CO)3(PPh2CH2CH2)2N–P(O)N(H)CH2CH2CH2O ( 4a–c ). 3a kristallisiert mit einem Mol Methanol aus, während 4a–c jeweils ein halbes Mol THF als Solvat enthalten. Alle Verbindungen wurden, soweit möglich, durch IR-, Raman-, 1H-NMR-, 31P-NMR-, 13C-NMR- und Massenspektren charakterisiert. Chemistry of Polyfunctional Molecules. 103. Chromium, Molybdenum, and Tungsten Tetra- and Tricarbonyl Complexes of a Diphenylphosphine-substituted Cyclophosphamide Abstract. (Ph2PCH2CH2)2N–P(O)N(H)CH2CH2CH2O (2) forms with cis-M(CO)4(C7H8) or fac-M(CO)3(CH3CN)3 (M = Cr, Mo, W; C7H8 = norbornadiene) the chelate complexes cis-M(CO)4(PPh2CH2CH2)2N–P(O)N(H)CH2CH2CH3O ( 3a–c ) or fac-M(CO)3(PPh2CH2CH2)2N–P(O)N(H)CH2CH2CH2O ( 4a–c ). 3a crystallizes with one mole of methanol whereas 4a–c contain 1/2 mole of THP as solvate. All compounds were, as far as possible, characterized by their IR, Raman, 1H NMR, 31P NMR, 13C NMR, and mass spectra.  相似文献   

9.
The P3-nortricyclane 4-methyl-1,2,6-triphosphatricyclo[2.2.1.02,6]heptane, CH3C(CH2P)3, (1), is synthesized in a better yield than earlier described from P4, a Na/K alloy, and CH3C(CH2Br)3 in boiling 1,2-dimethoxyethane. It reacts withM(CO)5 thf (M=Cr, W) in the molar ratios of 1:1, 1:2, and 1:3 to form the pentacarbonylmetal complexes CH3C(CH2P)3[M(CO)5] n [n=1, 2, 3;M=Cr (a), W (b)], (2 a, b–4 a, b).1 gives with Mo(CO)5 thf only mixtures of CH3C(CH2P)3[Mo(CO)5] n andcis-Mo(CO)4 derivatives, which were identified by their infrared active A1 v(CO) modes at 2075 and 2025 cm–1.All the new compounds have been characterized also by their1H{31P},31P{1H} NMR, IR,Raman, and mass spectra.
  相似文献   

10.
Synthesis, Crystal Structure and Spectroscopical Characterization of Palladium(II)‐Diphosphate Pd2P2O7 Pd2P2O7 is synthesized by heating (Tmax = 500 °C) stoichiometric amounts of PdO and phosphoric acid. Using chemical vapour transport experiments (850 °C → 750 °C, addition of PdCl2) Pd2P2O7 was crystallized. Pd2P2O7 adopts its own structure type (C 2/c (No. 15), Z = 4, a = 13,151(2) Å, b = 5,172(1) Å, c = 8,139(1) Å, β = 97,52(1)°, 1160 independent reflections, 55 variables, R1 = 0,021 and wR2 = 0,050). Square‐planar [PdO4]‐units are linked by diphosphate‐groups generating a 3D framework. Within this framework ribbons may be distinguished. Thus Pd2P2O7 might be described as palladium(II)‐[diphosphatopalladate(II)]. The results of various spectroscopic measurements (IR, Raman, UV/VIS, 31P‐MAS‐NMR) are reported and discussed within the context of the crystal structure.  相似文献   

11.
Reines, monoglyme- und kaliumhydridfreies, kristallines Kaliumsilyl wird aus Monosilan und Na/K-Legierung in Monoglyme unter Anwendung einer speziellen Art der Dosierung von Monosilan erhalten. Die analytische Charakterisierung der Verbindung ist durch Hydrolyse sowie durch Umsetzung mit Benzylchlorid und nachfolgende gaschromatographische Untersuchung des Reaktionsproduktes möglich. Löslichkeitsuntersuchungen von Kaliumsilyl in verschiedenen Solventien haben in Monoglyme eine zunehmende Löslichkeit mit abnehmender Temperatur ergeben. Die Leitfähigkeit einer Lösung von Kaliumsilyl in Monoglyme ist gemessen worden. Contributions to the Chemistry of Silicon and Germanium. XXXIII. On the Preparation of Potassium Silyl Pure, crystalline potassium silyl, free of glyme and potassium hydride, is prepared from monosilane and Na/K alloy, using a special method of dosing the monosilane. The substance was characterized by hydrolysis and by gaschromatographic investigation of the products from its reaction with benzyl chloride. Studying the solubility of potassium silyl in different solvents an increasing solubility in glyme is observed while the temperature is lowered. The conductivity of a solution of potassium silyl in glyme has been measured.  相似文献   

12.
On Chalcogenolates. 206. N-Thioacetyl Dithiocarbamates and Esters of N-Thioacetyl Dithiocarbamic Acid Thioacetamide reacts with carbon disulfide in the presence of KH to form via the tetrabutyl ammonium salt dark yellow N-thioacetyl dithiocarbamates M[S2C? NH? CS? CH3], where M = K, Rb, Cs. The salts as well as the methyl and ethyl ester have been characterized by means of electron absorption, infrared, nuclear magnetic resonance (1H and 13C), and mass spectra. Attempts to synthesize N-thioacetyl dithiocarbamic acid were not successful.  相似文献   

13.
1,4-Dihydro-1λ5,4λ5-[1,4]diphosphinines and a 1,4-Dihydro-1λ3,4λ3-[1,4]diphosphinine Reaction of thio- or dithiocarbonic acids with ethinyl amino phosphanes leads to 1,4-dihydro-1λ5,4λ5-[1,4]diphosphinine-1,4-disulfides. By this route compounds 4, 7 , and 8 have been prepared. Desulfurization of 4 with tri-n-butylphosphane results in 1,2,4,5-tetraphenyl-1,4-dihydro-1λ3,4λ3-[1,4]-diphosphinine 5 , which can be oxidized with tert-butyl-peroxide to the corresponding dioxide, 6 . From the reaction mixture of phenyl-phenylethinyl diethylamino phosphane and thioacetamide compound 4 and the unsymmetrical 1,4-dihydro-1λ5,4λ5-[1,4]diphosphinine 9 were isolated. Properties, nmr, ir and mass spectra of all new products are reported. A mechanism for the formation of 9 is suggested. The results of the X-ray structure determination of 8 and 9 are described.  相似文献   

14.
Synthesis and Crystal Structure of Alkali Metal Diamido Dioxosilicates M2SiO2(NH2)2 with M ? K, Rb and Cs SiO2 – α-quartz – reacts with alkali metal amides MNH2 (M ? K, Rb, and Cs) in molar ratios from 1:2 to 1:10 at 450°C ≤ T ≤ 600°C and P(NH3) = 6 kbar in autoclaves to diamidodioxosilicates M[SiO2(NH2)2]. Crystals of the colourless compounds which hydrolyze rapidly were investigated by x-ray methods. Following data characterize the structure determination on the isotypic compounds: The structures of the diamidodioxosilicates are closely related to the β? K2SO4 type. They contain isolated [SiO2(NH2)2]2? ions. K+ ions and hydrogen bridge bonds N? H…?O (with 2.68 Å ≤ d(N…?O) ≤ 2.78 Å for the K compound) connect the tetrahedral anions.  相似文献   

15.
Chemistry of Polyfunctional Molecules. 93. Halogenating Ring Cleavage of As3-Nortricyclane 4-Methyl-1,2,6-triarsatricyclo[2.2.1.02,6]heptane. Preparation and Properties of 2,6-Dihalogeno-4-methyl-1,2,6-triarsabicyclo[2.2.1]heptanes The reaction of the As3-nortricyclane CH3C(CH2As)3 ( 1 ) with PCl5, Br2, or I2 in a molar ratio of 1:1 leads to the new 2,6-dihalogeno-4-methyl-1,2,6-triarsabicyclo[2.2.1]heptanes CH3C(CH2As)3X2 (X = Cl, Br, I; 2a–c ). Application of a molar ratio of 1:2 results in the formation of 1,1,1-tris(dihalogenoarsinomethyl)ethanes CH3C(CH2AsX2)3 ( 4a–c ) in rather poor yields; 1H-NMR spectroscopic studies suggest that 4a–c are formed via 2a–c and the tetrahalogenodiarsacyclopentane derivatives ( 3a–c ); the latter can not be isolated from their solutions. 4a–c are obtained in very good yields by treatment of 1 with the halogenating agents in a molar ratio of 1:3 Comproportionation of 1 with 4a–c (molar ratio of 2:1) gives also 2a–c . Whereas in CD2Cl2 or CS2 disproportionation of 2a leads to an equilibrium between 1 and 4a , which is formed via the intermediate 3a . The homologues 2b, c are stable with respect to disproportionation in both solvents.  相似文献   

16.
On Chalcogenolates. 204. Reaction of Acetamide with Carbon Disulfide. 1. Synthesis and Properties of N-Acetyl Dithiocarbamates Acetamide reacts with carbon disulfide in the presence of a strong base to form via the tetrabutyl ammonium salt the N-acetyl dithiocarbamates M[S2C? NH? CO? CH3] with M = Na, K, Rb, Cs, [N(nC4H9)4]. The new compounds have been characterized by means of electron absorption, infrared, nuclear magnetic resonance (1H and 13C), and mass spectra. Attempts to synthesize N-acetyl dithiocarbamic acid were not successful.  相似文献   

17.
Chemistry of Dimesityl Iron. IX. Diaryl-Iron Complexes with Coordination Number Three and Four: Crystal Structures of [FeMes2(col)] and [FeTrip2(py)2] The diaryliron compounds FeMes2, 1 , and FeTrip2, 2 , from complexes with coordination numbers (CN) of four, normally. Bulky ligands however give adducts with CN of three. The crystal structures of compounds [ 1 (col)] (CN 3) and [ 2 (py2)] (CN 4) have been determined.  相似文献   

18.
Synthesis and Properties of Iron(II) Complexes with tetra- and pentadentate N,S-Chelate Ligands. Crystal Structure of [Fe(GBMA)py] · py (GBMA2? = Glyoxal bis-(2-mercaptoanil)) The complexes glyoxal-bis-(2-mercaptoanil)iron(II) [Fe(GBMA)], diacetyl-bis-(2-mercaptoanil)iron(II), [Fe(DBMA)] and o-phthalaldehyde-bis-(2-mercaptoanil)iron(II) [Fe(PhBMA)] have been synthesized by reaction of the corresponding protonated ligands with anhydrous iron(II)-acetate. Pyridine-2,6-dialdehyde-bis-(2-mercaptoanil)iron(II), [Fe(PyBMA)] was obtained by a template synthesis with pyridine-2,6-dialdehyde, 2-aminothiophenol and iron(II)-acetate. Recrystallizing the complexes [Fe(GBMA)] and [Fe(DBMA)] from pyridine afforded [Fe(GBMA)py] · py and [Fe(DBMA)py] · py. For all complexes the magnetic properties have been determined, and the Mössbauer spectra were recorded at 82 K. Compounds [Fe(GBMA)] and [Fe(DBMA)] show quasi reversible redox properties in the cyclovoltammogram, while for [Fe(PhBMA)] an irreversible oxidation was observed. [Fe(GBMA)py] · py crystallizes in the monoclinic space group P21 with a = 1288.7(1), b = 1242.63(5), c = 1396.0(1) pm, β = 98.24(1)°, and Z = 4. In the neutral complex the Fe atom has a square pyramidal coordination with the pyridine nitrogen atom in apical position. The basal plane is formed by two nitrogen and two sulfur atoms of the ligand GBMA2?. The iron is located 40 pm above the pyramidal base. Its average distances to the donor atoms of the GBMA ligand are Fe? N = 190 pm, and Fe? S = 222 pm, while the distance to the nitrogen atom of the coordinated pyridine molecule is 207 pm.  相似文献   

19.
Vanadium Complexes with Tridentate Diacidic Ligands. The Crystal Structures of Bis[acetylacetonato-thiobenzoylhydrazonato(2-)]vanadium(IV), Methoxo-oxo-[salicylaldehyd-thiobenzoylhydrazonato(2-)]vanadium(V), and Methoxo-oxo-[salicylaldehydbenzoylhydrazonato(2-)]methanol Vanadium(V) By template reactions of bis(acetylacetonato)oxovanadium(IV) and bis(salicylaldehydato)oxo-vanadium(IV), respectively, with benzoylhydrazine, thiobenzoylhydrazine, and 2-aminophenol the vanadium(IV) complexes V(LLL)2 of tridentate azomethine ligands LLL were synthesized. The complexes were characterized by EPR spectroscopy and by absorption spectroscopy. From the complex V(LLL)2 ( 1 ), in which LLL is acetyl-aceton-thiobenzoydrazonate(2-), the crystal structure analysis was solved. The vanadium atom in 1 is coordinated trigonal-prismatically by two N, 0 and S atoms. Furthermore, the 0x0 vanadium(V) complexes[VO(LLL)(OCH,)] (6) with LLL = salicylaldehyd-thio-benzoylhydrazonato(2-) and [VO(LLL)(OCH3)· -CH3OH] (7) with LLL = salicylaldehydbenzoylhydrazonato(2-) were identified by X-ray diffraction and by IR spectroscopy in the reaction products. Crystallographic data for 1, 6 , and 7 see ?Inhaltsübersicht”?.  相似文献   

20.
The Syntheses and Vibrational Spectra of the Homoleptic Metal Acetonitrile Cations [Au(NCCH3)2]+, [Pd(NCCH3)4]2+, [Pt(NCCH3)4]2+, and the Adduct CH3CN · SbF5. The Crystal and Molecular Structures of [M(NCCH3)4][SbF6]2 · CH3CN, M = Pd or Pt Solvolyses of the homoleptic metal carbonyl salts [M(CO)4][Sb2F11]2, M = Pd or Pt, in acetonitrile leads at 50 °C both to complete ligand exchange for the cations as well as to a conversion of the di-octahedral anion [Sb2F11] into [SbF6] and the molecular adduct CH3CN · SbF5 according to: [M(CO)4][Sb2F11]2 + 7 CH3CN → [M(NCCH3)4][SbF6]2 · CH3CN + 2 CH3CN · SbF5 + 4 CO M = Pd, Pt The monosolvated [M(NCCH3)4][SbF6]2 · CH3CN are obtained as single crystals from solution and are structurally characterized by single crystal x-ray diffraction. Both salts are isostructural. The cations are square planar but the N–C–C-sceletial groups of the ligands depart slightly from linearity. The new acetonitrile complexes as well as [Au(NCCH3)2][SbF6] and the adduct CH3CN · SbF5 are completely characterized by vibrational spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号