首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

α-Hydroxyacetylenes (2-propyn-1-ol, DL-3-butyn-2-ol, 1-octyn-3-ol, 2-phenyl-3-butyn-2-ol) with a hydroxy functional group were polymerized by various Mo- and W-based catalysts. In general, the catalytic activities of Mo-based catalysts were greater than those of W-based catalysts for these polymerizations. In the polymerization of 2-propyn-l-ol, MoCl5 alone and the MoCl5-EtAlCl2 catalyst system gave a quantitative yield of polymer. In the polymerization of 2-propyn-l-ol and its homologues by Mo-based catalysts, the polymer yield decreased as the bulkiness of the substituent increased. On the other hand, the polymer yield increased as the bulkiness of the substituent increased in WCl6-EtAlCl2-catalyzed polymerization. Polymers with a bulkier substituent showed better solubility in organic solvents than those without a substituent [e.g., poly (2-propyn-l-ol)]. The structures of the resulting polymers were characterized by various instrumental methods such as 1H- and 13C-NMR, IR, and UV-visible spectroscopies. Thermogravimetric analyses and thermal transitions of the resulting polymers were also studied.  相似文献   

2.
Abstract

The polymerization of 1-ethynyl-l-cyclohexanol (ECHO) was carried out by various transition metal catalysts. The Mo- and W-based catalysts gave a relatively low yield of polymer (≤32%). The catalytic activity of Mo-based catalysts was greater than that of W-based catalysts. PdCl2 was a very effective catalyst for the present polymerization and gave a high yield of polymer. (Ph3P)2PdCl2 and PtCl2 were also found to be effective catalysts. The structure of the resulting poly(ECHO) was identified by various instrumental methods as a conjugated polyene structure having an α-hydroxycyclohexyl substituent. The poly(ECHO)s were mostly light-brown powders and completely soluble in various organic solvents such as chloroform, chlorobenzene, benzene, DMSO, and THF. Thermal and morphological properties were also studied.  相似文献   

3.
The polymerization of 1-methoxy-1-ethynylcyclohexane (MEC) was carried out by various transition metal catalysts. The catalysts MoCl5, MoCl4, and WCl6 gave a relatively low yield of polymer (≤ 16%). The catalytic activity of Mo-based chloride catalyst was greater than that of W-based chloride catalyst. However, catalyst tungsten carbene complex (I) gave a larger molar mass and higher yield in the presence of a Lewis acid such as AlCl3 than in the absence of a Lewis acid. The activity of the tungsten carbene complex was obviously affected by Lewis acidity. The catalyst PdCl2 was a very effective catalyst for the present polymerization and gave polymers in a high yield. The structure of the resulting poly(MEC) was identified by various instrumental methods as a conjugated polyene structure having an α-methoxycyclohexyl substituent. The poly(MEC)s were mostly light-brown powders and completely soluble in various organic solvents such as tetrahydrofuran (THF), chloroform (CHCl3), ethylacetate, n-butylacetate, dimethylformamide, benzene, xylene, dimethylacetamide, 1,4-dioxane, pyridine, and 1-methyl-2-pyrrolidinone. Thermogravimetric analysis showed that the polymer started to lose mass at 125°C and that maximum decomposition occurred at 418°C. The x-ray diffraction diagram shows that poly(MEC) has an amorphous structure. © 1997 John Wiley & Sons, Inc.  相似文献   

4.
The polymerization of acenaphthylene (ACN) was examined in the presence of the group V and VI transition metal salts such as WCl6, MoCl5, TaCl5, and NbCl5, as catalysts under various reaction conditions. These transition metal salts were found to be effective catalysts for the polymerization of ACN. The polymerization of ACN by WCl6 in chlorobenzene proceeded at a high initial rate when the monomer to catalyst mole ratio was 200. In addition, it was observed that aromatic solvents generally were found to be superior to aliphatic solvents for both conversion and molecular weight. The structure of the resulting polymers was characterized by means of NMR, IR, UV, and x-ray diffraction. Emission properties were also investigated. Fluorescence emission spectra of the polymers obtained by WCl6 as a catalyst varied strongly depending on the polymerization solvent. Thus, it appears that the polyacenaphthylene produced by WCl6 was a different configuration dependent on the polymerization solvents used.  相似文献   

5.
The ring-opening polymerization of an unsaturated bicyclic lactam, 2-azabicyclo-[2,2,1]-hept-5-en-3-one (ABHEO), was carried out using metathesis catalysts under various reaction conditions. It is observed that the best results (34% conversion and ηinh: 0.18 dL/g) were obtained when the mole ratios of ABHEO to WCl6 as a catalyst and WCl6 to AlEt3 as a cocatalyst were 200 and 4, respectively. The infrared (IR) and nuclear magnetic resonance (1H- and 13C-NMR) spectra of the polymer obtained indicated that the ABHEO was transformed to the ring-opened polymer, poly(2-pyrrolidone-3,5-diylvinylene) [poly(ABHEO)]. The resulting polymer was amorphous as determined by DSC analysis, which showed only secondary transition at 100°C.  相似文献   

6.
A new class of multifunctional polymers based on poly(1, 6-heptadiyne) derivatives with various functional groups such as carbazole unit for photoconductive polymers and nonlinear optical (NLO) chromophores for NLO polymers were synthesized by metathesis polymerization. The polymerizations were carried out with MoCl5- and WCl6-based catalysts. The catalytic activity of MoCl5 was found to be greater than that of WCl6. The resulting polymers exhibited photoconductivity and large optical nonlinearity. These conjugated polymers have good solubility in common organic solvents, long-term stability toward air oxidation, and high electrical conductivity.  相似文献   

7.
The polymerization of 4,4-bis(t-butylbenzoylmethyl)-1,6-hepta-diyne (BTBH) was carried out by group 5,6-transition metal catalysts. MoCl5- as well as WCl6-based catalysts were effective for the cyclopolymerization of BTBH. The polymer structure was analyzed to have conjugated backbone and recurring 5-membered ring by various spectroscopes. The polymer showed good solubility in common organic solvents. The polymer had good thermal stability and mechanical property. The oxygen permeability coefficient (PO2) and permselectivity of oxygen to nitrogen (PO2/PN2) of poly(BTBH) with bulky and rigid t-butyl benzoyl group were 23.2 barrer and 4.63, respectively.  相似文献   

8.
The kinetics of the polymerization of cyclopentene by WCl6/AliBu3 catalysts have been studied and the factors controlling the reproducibility of the rate of polymerization have been ascertained. A significant dependence of the rate of polymerization on the time between the additions of WCl6 and AliBu3 was observed. The dependence of the catalyst activity r,i this time delay suggested that WCl6 reacted with cyclopentene to produce an unstable species (W1) that could react with AliBu3 to produce a catalytically active species (W11) or that could react further with cyclopentene to produce another species W2 that in turn would react with AliBu3 to produce a much less active catalyst W21. The detailed study of the kinetics of polymerization under controlled conditions suggested a kinetic chain mechanism initiated by two catalyst species; mechanism of polymerization based on the carbene system is suggested.  相似文献   

9.
The polymerization of phenylacetylene initiated by MoCl5 and WCl6 based initiators was monitored directly in the NMR sample tube and demonstrated the presence of backbiting and intramolecular cyclization reactions. It was shown that the ratio of cis to trans structural units obtained by isomerization prior to double bond formation dictates the degree of backbiting and intramolecular cyclization reactions. This cis–trans ratio determines the length of cis–transoidal sequences present in the polymer backbone which are available for both backbiting and intrachain cyclization reactions. The cyclic trimers obtained in the metathesis polymerization of phenylacetylene are formed only through the cis–cisoidal-induced backbiting and/or intramolecular reactions. The o-trimethylsilylphenylacetylene follows a living mechanism of polymerization. This is due to the fact that the size of the ortho substituent suppresses the cis–transoidal to cis–cisoidal isomerization reactions and therefore eliminates the backbiting reactions. The steric hindrance provided by the size of the ortho substituent also eliminates interchain and intrachain reactions.  相似文献   

10.
Polymerizations of 1‐naphthylacetylene (1‐NA) and 9‐anthrylacetylene (9‐AA) by various transition metal catalysts were studied, and properties of the polymers were clarified. 1‐NA polymerized with WCl6‐based catalysts to offer dark purple polymers in good yield. Especially, a binary catalyst composed of WCl6 and Ph3Bi gave a polymer with high molecular weight (Mw = 140×103) and sufficient solubility in common solvents. The use of Mo and Rh catalysts, in contrast, resulted in the formation of insoluble red poly(1‐NA)s. 9‐AA gave insoluble polymers by both WCl6‐ and MoCl5‐based catalysts in moderate to good yields. Copolymerization of 9‐AA with 1‐NA by WCl6–Ph3Bi provided a soluble copolymer which exhibited the largest third‐order nonlinear optical susceptibilities (χ(3)(−3ω; ω, ω, ω) = 40×10−12) among all the substituted polyacetylenes synthesized so far. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 277–282, 1999  相似文献   

11.
Polymerizations of cyclooctene, 5-methyl, 5-chloro-, and 5-methoxycyclooctenes were studied. Cyclooctene (CO) and 5-methylcyclooctene (MCO) provided high polymers in 80% yield with the use of WCl6/AlEti.B Clu5 or WCl6/AlEtCl2 catalyst. 5-Chlorocyclooctene gave oligomer in 50% yield with WCl6/AlEt2Cl catalyst. Neither polymer nor oligomer was produced from 5-methoxycyclooctene. These polymers were found to be produced through a ring-opening mechanism. The ratio of cis to trans structure in poly(CO) and poly(MCO) was determined by measurements of the decoupled ′H-NMR spectrum. Poly(CO) containing more than 50% trans structure was a crystalline solid at room temperature, while the polymer containing 30% of trans structure did not crystallize at room temperature. Poly(MCO) was amorphous, regardless of the content of trans structure. Poly(CO) and poly(MCO) obtained with MoCU/AlEtaCl or MoCU/AlEtCb catalyst contained no carbon-carbon double bond, and a vinyl polymerization mechanism was expected for this system.  相似文献   

12.
The polymerization of trimethylsilylacetylene was investigated by using W and Mo catalysts. Mixtures of WCl6 with appropriate organometallic cocatalysts such as n-Bu4Sn and Et3SiH at 1:1 molar ratio provided poly(trimethylsilylacetylene) in high yields. On the other hand, MoCI5 gave mainly methanol-soluble oligomers even in the presence of these cocatalysts. The polymer formed was a partly insoluble yellow powder, and the molecular weight of the soluble fraction was about 7000. The IR, 1H-NMR, and 13C-NMR spectra supported the polymer structure, (CH = CSiMe3)n. Protodesilylation of poly(trimethylsilylacetylene) afforded a new polymer containing both acetylene and trimethylsilylacetylene units.  相似文献   

13.
Abstract

Various para-substituted phenyl propargyl ethers (substitutent = H, OMe, and CN) were synthesized and polymerized by transition metal catalyst systems including MoCl5, WC16, and PdCl2. The catalytic activity of MoCl5-based catalysts was greater than that of WCl6-based catalysts for the present polymerization. The polymer yield increased in the following order: H > OMe > CN, according to substitutents. The [poly-(pheny] propargyl ether) [poly(PPE)] and poly(methoxy phenyl propargyl ether) [poly(OMe-PPE)] obtained are completely soluble in various organic solvents such as chloroform, methylene chloride, THF, and 1,4-dioxane. However, poly(cyanophenyl propargyl ether) [poly(CN-PPE)] is partially soluble in various organic solvents such as those mentioned above. The electrical conductivities of the undoped and iodine-doped polymers and found to be about 10?13 and 10?4-10?5 S/cm, respectively. The solubilities, thermal properties, and morphologies of the resulting polymers were also studied.  相似文献   

14.
Chain-transfer reactions to alkylbenzenes were investigated in the polymerizations of phenylacetylene and styrene by WCl6 in benzene at 30°C. In the polymerization of phenylacetylene, alkylbenzenes did not work as chain-transfer agents, and further ethyl iodide was not a terminating agent. These findings suggest that the polymerization of phenylacetylene by WCl6 differs from the conventional cationic or anionic mechanisms. On the other hand, the ability of alkylbenzenes as chain-transfer agents in the polymerization of styrene by WCl6 increased in the following order: toluene < p-xylene < m-xylene < o-xylene. This order is similar to that in the polymerization by SnCl4. These results indicate that the polymerization of styrene by WCl6 proceeds by a conventional cationic mechanism.  相似文献   

15.
Cationic polymerization of 2-phenylbutadiene (2-PBD) has been investigated. Polymerization were performed by SnCl4·TCA, WCl6, and BF3·OEt2 as catalysts in methylene chloride. 2-PBD polymerized easily and gave low molecular weight polymers. The polymerization proceeded to give a polymer having 1,4-structure without 1,2- or 3,4-structure. The double bonds of the polymer were partially consumed, probably owing to cyclization and chain-transfer reactions. 2-PBD was 0.66 times as reactive as styrene and 1.2 times as reactive as isoprene in the copolymerization at ?78°C by SnCl4·TCA in methylene chloride. Reactivities of ring-substituted 2-PBD obeyed the Hammett relation with ρ+ = ?2.04. The 13C chemical shift of ring-substituted 2-PBD was measured. Chemical shift values for C1 and C3 were correlated with Hammett σ, but those for C2 and C4 were almost unaffected by the substituents. On the basis of experimental results, the transition state of the cationic polymerization of 2-PBD was depicted as a benzylic cation rather than a phenylallylic one.  相似文献   

16.
The reaction of cycloolefins with the components of the catalytic system WCl6/epichlorohydrin/Al(iBu)3, active in the ring-opening polymerization of cycloolefins, was investigated in order to get additional information on the mechanism of polymerization. The study led to the following conclusions. 1) Olefin complexation with the transition metal has a decisive influence on active center formation. 2) Trivalent tungsten species resulting from fast reduction of the cycloolef in/transition metal complex by aluminum alkyl or from a slow reduction process d W(VI) in the presence of cycloolef in alone, show a particularly high activity in ring-opening polymerization. 3) In the case of tricomponent systems (e.g., WCl6/Al(iBu)3/ epichlorohydrin or WCl6/Al(iBu)3/chloranil), the nature of the third component has a decisive effect on both polymerization kinetics and the molecular weight and structure of the resulting polymer. The data are discussed in the context of a reaction mechanism based on carbene complexes as active centers.  相似文献   

17.
Some polyacetylene derivatives containing an amine functional group were prepared by the polymerization of propargylamine (PA) and 1,1-diethylpropargylamine (DEPA) with various transition metal catalysts. In the polymerization of PA, Mo-based catalysts were more effective than that of W-based catalysts, and organoaluminum compounds, especially EtAlCl2, were found to be very effective cocatalysts. In the polymerization of DEPA, Mo-and W-based catalyst systems showed a similar catalytic activity. The polymerization easily proceeded in polar solvents such as nitrobenzene and DMF as well as nonpolar aromatic solvents such as chlorobenzene, toluene, etc. The resulting poly(PA) and poly(DEPA) were insoluble in organic solvents regardless of polymerization catalysts but the polymers were found to be stable to air oxidation. Thermogravimetric analyses and thermal transitions of poly(PA) and poly(DEPA) were also studied. © 1992 John Wiley & Sons, Inc.  相似文献   

18.
The Polymerization was carried out by MoCl5 and WCl6 associated with various organo-metallic cocatalysts. MoCl5-based catalysts were found to be more effective. Polymerization of monomer containing a spiro structure proceeded rapidly to reach 80% yield within 2 h at 30°C. Polymerization of monomer led to a soluble, purple colored polymer with number average molecular weight (Mn) of 50000. Elemental analysis, 1H-NMR, 13C-NMR, IR, and UV-visible spectra of the resulting polymer indicated that the polymer contains alternating double and single bonds along the polymer backbone and a cyclic recurring unit with a double spiro structure. In addition, the polymer had good oxidative and thermal stability and good solubility in common organic solvents. © 1995 John wiley & Sons, Inc.  相似文献   

19.
MoCl5, WCl6, and OMoCl4 were found to be effective initiators for the polymerization of acetylene and its monosubstituted derivatives RC?CH. The polymerization proceeded in homogeneous and heterogeneous media and was carried out in nonpolar (chloroalkanes, aromatic hydrocarbons) and polar (THF, acetone, dioxane, carboxylic acids) solvents to give a high yield of polymers.  相似文献   

20.
A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high effcient production of mixed alcohols from bio-syngas, derived from the biomass gasification. The Cu1Co1Fe1Mo1Zn0.5-6%K catalyst exhibited a higher activity on the space-time yield of mixed alcohols, compared with the other Mo-based catalysts. The carbon conversion significantly increases with rising temperature below 340 oC, but the alcohol selectivity has an opposite trend. The maximum mixed alcohols yield derived from biomass gasification is 494.8 g/(kgcatal·h) with the C2+ (C2-C6 higher alcohols) alcohols of 80.4% under the tested conditions. The alcohol distributions are con-sistent with the Schulz-Flory plots, except methanol. In the alcohols products, the C2+ alcohols (higher alcohols) dominate with a weight ratio of 70%-85%. The Mo-based cata-lysts have been characterized by X-ray diffraction and N2 adsorption/desorption. The clean bio-fules of mixed alcohols derived from bio-syngas with higher octane values could be used as transportation fuels or petrol additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号