首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monodisperse polyglycidyl methacrylate (PGMA) microsphere particles crosslinked with divinylbenzene crosslinker were prepared by single-stage dispersion copolymerization in ethanol medium. 1 wt% of DVB was successfully incorporated due to the costabilizing effect of GMA as a surface-active monomer. This behavior may indicate that the fast formation of stable primary particle leads to monodispersity. The average particle sizes and the particle size distributions increased with the DVB crosslinker concentration. The effects of two different variables (initiator concentration, crosslinker concentration) on the rate of dispersion copolymerization have been investigated. With the initiator concentration, the polymerization procedure mainly depended on the dual natures of general dispersion polymerization, in the crosslinked state. Up to 1 wt% DVB, the particle growth was controlled by the monomer diffusion from the continuous phase into the particle phase.  相似文献   

2.
采用二乙烯基苯-55(DVB-55)和乙二醇二甲基丙烯酸酯(EGDMA)作为混合交联剂,乙腈为溶剂,偶氮二异丁腈(AIBN)为引发剂,以甲基丙烯酸为功能单体采用沉淀聚合法合成了单分散或窄分散的、表面具有羧基的交联聚合物微球,所得微球的粒径变化范围为0.6~3.8μm.通过调节交联剂DVB-55和EGDMA的投料比,可以对微球的粒径、粒径分布、产率、热稳定性以及表面官能团含量进行有效控制.文中对混合交联剂DVB-55与EGDMA比例的改变对微球的粒径、粒径分布以及产率的影响机理给出了理论解释;对DVB和EGDMA的兼容性研究表明,制备的三元聚合物微球的核拥有比投料比稍多的DVB单元,而微球的外层则以在预聚混合物中占更大比例的交联剂为主.  相似文献   

3.
A “continuous” emulsifier‐free emulsion copolymerization (CEFEP) of styrene and divinylbenzene (DVB) or methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) has been devised to produce uniform polymeric microspheres of narrow size distribution from 74 nm to 2 μm, depending on reaction time. Monomer and crosslinker vapors were fed continuously into a small reactor. We suggest that after initial nucleation, subsequent CEFEP proceeds near the surfaces of growing particles in a monomer‐swollen outer shell. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3181–3187, 2000  相似文献   

4.
The mechanism of the miniemulsion polymerization of styrene was investiaged through a combination of calorimetry to monitor the polymerization rate and transmission electron microscopy (TEM) to follow the evolution of the particle size distribution. These techniques proved to be a powerful combination for gaining detailed mechanistic information regarding these polymerizations. Particle size analysis of the latexes withdrawn during the course of the reaction revealed that most of the polymer particles were formed by a relatively low conversion (i.e., 10% conversion). However, nucleation continued well past this point (to 40-60% conversion). In fact, it was observed that nucleation in miniemulsion polymerizations using cetyl alcohol continued past the maximum in the rate of polymerization. As a result of these long nucleation periods, the latex particle size distributions produced from these miniemulsion polymerizations were broader than their conventional emulsion polymerization counterparts, and were negatively skewed with a tail of small particles. The amount of negative skewing of the particle size distributions was found to decrease with increasing initiator (potassium persulfate) concentration. Finally, a correlation was observed between the length of time to the maximum polymerization rate and the breadth of the particle size distribution as reflected in the standard deviation. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Monodisperse poly(poly(ethyleneglycol) methyl ether acrylate-co-acrylic acid) (poly(PEGMA-co-AA)) microspheres were prepared by distillation-precipitation polymerization with divinylbenzene (DVB) as crosslinker with 2,2'- azobisisobutyronitrile (AIBN) as initiator in neat acetonitrile without stirring. Under various reaction conditions, four distinct morphologies including the sol, microemulsion, microgels and microspheres were formed during the distillation of the solvent from the reaction system. A 2D morphological map was established as a function of crosslinker concentration and the polar monomer AA concentration, in comonomer feed in the transition between the morphology domains. The effect of the covalent crosslinker DVB on the morphology of the polymer network was investigated in detail at AA fraction of 40 vol%. The ratios of acid to ethylene oxide units presenting in the comonomers dramatically affected the polymer-polymer interaction and hence the morphology of the resultant polymer network. The covalent crosslinking by DVB and the hydrogen bonding crosslinking between two acid units as well as between the acid and ethylene oxide unit played key roles in the formation of monodisperse polymer microspheres.  相似文献   

6.
This work is an extension of previous research results reported by our team (Colloid and Polymer Science 2013, 291: 2385-2398), where large scale and high solid content latexes of poly(n-butyl acrylate) were obtained with the particle coagulation method induced by the electrolyte. However, how to prepare controlled particle size distribution polymer latex has not been studied. Thus, in this study, the effect of the monomer/water ratios and electrolyte concentrations on particle formation and growth methods were studied by following the tracks of the evolutions of particle size, number and distribution as a function of reaction time or conversion. Experimental results showed that the length of time that particle nucleation occurred increased with increasing monomer charged for the systems without electrolyte. A point worthy of attention here is that homogeneous nucleation may occur at high monomer concentrations (30/70, 40/60). However, electrolyte added could be made the nucleation mechanism shift from micellar/homogeneous nucleation to micelle /coagulation nucleation. As a result, the final particle size distribution can be controlled by adding an appropriate electrolyte to regulate the nucleation mechanism. Spherical and uniformly sized particles could be obtained when electrolyte concentration is between 0.2 wt% and 0.4 wt% for water at the high monomer/water ratio (40/60). The effects of electrolyte concentration on nucleation mechanism mainly were expressed by decreasing the solubility of the monomer and interparticle potential, and then preventing homogeneous nucleation and enhancing particle coagulation.  相似文献   

7.
粒径可控的聚乙烯醇交联微球VA/DVB的制备   总被引:2,自引:0,他引:2  
以醋酸乙烯酯(VAc)为主单体,二乙烯基苯(DVB)为交联剂,聚乙烯醇(PVA)为分散剂,采用悬浮聚合法制备了交联微球VAe/DVB.重点考察了分散剂用量、搅拌速率、油水两相比例、NaCl用量等因素对交联微球的形成及其粒度的影响.使用甲醇对微球VAc/DVB进行醇解反应,制得了聚乙烯醇交联微球VA/DVB.结果表明:交联微球VA/DVB的物理形态决定于前驱体微球VAc/DVB的形貌与粒径.在悬浮聚合体系中,分散剂用量、搅拌速率与油水两相比是影响交联微球制备的主要因素,当分散剂用量太少(<0.3%)、搅拌速率太慢(<200 r/min)与油水两相体积比太大(>l:4)时,共聚合体系中均不能发生成球过程.控制悬浮聚合的反应条件,可以制备出球形度好、粒径可调控的交联微球VA/DVB.影响醇解反应的主要因素是反应温度,适宜的温度是40℃,反应15 h醇解度可达92%.  相似文献   

8.
This paper reports the mechanistic details concerning the synthesis of crosslinked poly(n-butyl acrylate) dispersions intended to be used as seeds in the preparation of core-shell emulsions. The influence of crosslinking comonomers and the amount and type of surfactants on the kinetics, particle nucleation, particle size and particle size distribution in the batch emulsion polymerisation of n-butyl acrylate (BA) is explored. In the case of EGDA (ethylene glycol diacrylate) crosslinker the particle number decreased with increasing crosslink density, whereas the opposite trend was observed in the case of m-diisopropenylbenzene (m-DIPB) in the presence and absence of the surfactant sodium dodecyl sulfate (SDS). The observed behaviour is mainly attributed to the variation in the aqueous phase kinetics caused by the water solubility of the comonomer, which influences the formation rate of precursor particles during the nucleation stage. Only for the less water soluble crosslinker, DIPB, could the increase of particle number be explained within the Smith–Ewart theory by assuming prolonged nucleation due to reduced swelling of growing particles with monomer as a result of the crosslinking reaction.Abbreviations EGDA ethylene glycol diacrylate - m-DIPB meta-diisopropenylbenzene - SDS sodium dodecyl sulfate - PBA poly(n-butyl acrylate) - AFFF asymmetric field flow fractionation - MALLS multiangle laser light scattering - CMC critical micelle concentration  相似文献   

9.
The factors affecting particle size of reactive microgels formed during the self-emulsifying copolymerization of unsaturated polyester (UP)with butyl acrylate (BA)have been studied. The parameters discussed are: the proportion of the UP in the monomer mixture, the molecular weight and the carboxyl value of the UP, the phase ratio, the electrolyte concentration and the polar solvent additive. The seeding emulsion polymerization is discussed as well.It turned out that the particle size of the reactive microgels can be controlled in a definite range by changing the experimental conditions. However the particle size distribution becomes broader as the average diameter increases. It is suggested that the agglomeration of primary particles plays an important role during the growth of microgel particle.  相似文献   

10.
研究了表面活性单体「磺化-十二醇-烯丙基甘油-丁二酸酯钠盐(ZC-L)」的用量对MMA/BA/ZC-L乳液聚合速率和粒径的影响,用Corltir LS230型激光粒径分析仪测定聚合过程中乳液的粒径和粒径分布变化,并与MMA/BA无皂乳液聚合及十二烷基苯磺酸钠存在下的MMA/BA乳液聚合作了比较。「ZC-L」〈CMC时,成核机理为均相成核机理,乳胶粒需依靠粒子间的凝聚来提高表面电荷密度而稳定;「ZC  相似文献   

11.
研究了表面活性单体[磺化-十二醇-烯丙基甘油-丁二酸酯钠盐(ZC-L)]的用量对MMA/BA/ZC-L乳液聚合速率和粒径的影响,用CoulterLS230型激光粒径分析仪测定聚合过程中乳液的粒径和粒径分布变化,并与MMA/BA无皂乳液聚合及十二烷基苯磺酸钠存在下的MMA/BA乳液聚合作了比较.[ZC-L]CMC时,成核机理包括均相成核和胶束成核机理,生成的粒子因吸收体系中的表面活性单体而稳定存在.  相似文献   

12.
The mechanism of growth of latex particles in the emulsion polymerization of vinyl acetate using a polymerizable surfactant, sodium dodecyl allyl sulfosuccinate (TREM LF-40; Henkel) was investigated. Both the aqueous phase and the particle/water interface were found to be loci for the copolymerization of TREM LF-40 with vinyl acetate. Competitive growth experiments using TREM LF-40 and its nonpolymerizable derivative were conducted to separate the effects of aqueous phase and particle surface. Particle size analysis of the seeded and unseeded polymerizations coupled with kinetic results suggested that the reactions at the particle/water interface are more important and that the particle size of the latexes is a key parameter controlling the polymerization rate through copolymerization and chain transfer to the polymerizable surfactant at the particle surface. A decrease in particle size lead to an increase in the amount of TREM LF-40 polymerized at the particle surface and to a decrease in polymerization rate. © 1992 John Wiley & Sons, Inc.  相似文献   

13.
Particle formation and particle growth compete in the course of an emulsion polymerization reaction. Any variation in the rate of particle growth, therefore, will result in an opposite effect on the rate of particle formation. The particle formation in a semibatch emulsion polymerization of styrene under monomer‐starved conditions was studied. The semibatch emulsion polymerization reactions were started by the monomer being fed at a low rate to a reaction vessel containing deionized water, an emulsifier, and an initiator. The number of polymer particles increased with a decreasing monomer feed rate. A much larger number of particles (within 1–2 orders of magnitude) than that generally expected from a conventional batch emulsion polymerization was obtained. The results showed a higher dependence of the number of polymer particles on the emulsifier and initiator concentrations compared with that for a batch emulsion polymerization. The size distribution of the particles was characterized by a positive skewness due to the declining rate of the growth of particles during the nucleation stage. A routine for monomer partitioning among the polymer phase, the aqueous phase, and micelles was developed. The results showed that particle formation most likely occurred under monomer‐starved conditions. A small average radical number was obtained because of the formation of a large number of polymer particles, so the kinetics of the system could be explained by a zero–one system. The particle size distribution of the latexes broadened with time as a result of stochastic broadening associated with zero–one systems. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3940–3952, 2001  相似文献   

14.
We carried out emulsion homopolymerizations and copolymerizations of butyl acrylate (BuA) and methyl methacrylate (MMA) with different types and concentrations of surfactants to determine the influence of these parameters on the particle size and particle size distribution and to elucidate the mechanism of particle formation. As expected, the mechanisms of nucleation above and below the critical micelle concentration were very different; however, it was also found that the presence of partially soluble monomers such as MMA in the water phase had a significant influence on the critical micelle concentration of Triton X‐405 (>50%). In addition, the nucleation mechanism during copolymerization seemed to be dominated by BuA, with the number of particles per liter being very similar to the number nucleated during its homopolymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2832–2846, 2001  相似文献   

15.
Dispersion polymerization of styrene in polar solvents in the presence of hydroxypropyl cellulose (HPC) produces latex particles from ca. 1 to 26 μm depending on reaction parameters. Increasing the initiator concentration or temperature decreases the molecular weight, but increases the particle size and breadth of the size distribution. The decrease in molecular weight with increasing Ri, caused by larger initiator concentration or higher temperature, is expected based of fundamental kinetic relationships. The inverse correlation between size and rate of initiation is rationalized by polarity (stabilizing ability) of the grafted HPC-polystyrene formed in situ. High polar HPC-g-PS, which contains shorter graft polystyrene chain, stabilizes particles less effectively and this leads to larger particles. The primary influence of initial styrene concentration is a solvent effect: larger particles are obtained at high styrene concentration due to high solubility of polystyrene during the initial part of the reaction. The influence of the molecular weight of HPC is to change the polarity of the HPC-g-PS stabilizer. Comparison of particle growth of three critical polymerization systems suggests that the favorable continuous-phase solubility parameter for dispersion polymerization of styrene is around 11.6 (cal/mL)1/2. Too high or too low polarity generates particles with broad size distribution because large particles are formed during the initial stage and nucleation continues as the polymerization proceeds. © 1992 John Wiley & Sons, Inc.  相似文献   

16.
研究了引入的交联剂二乙烯基苯对作为锂离子二次电池负极材料的聚合物裂解碳性能的影响.结果表明交联剂引入到聚丙烯腈中后,在热处理过程中有利于该聚合物的碳化,导致层间距d002减少及石墨微晶尺寸增加;交联剂的固定作用使碳材料的有序性得到了提高;同时微孔数目也得到了增加.这些因素的影响导致了聚合物裂解碳的可逆储锂容量随交联剂的量的增加而提高.对于别的加聚物如聚4乙烯吡啶而言,同样也使所得到的聚合物裂解碳的可逆储锂容量得到了提高.最大可逆容量可达600mAh·g-1.  相似文献   

17.
Highly monodisperse polymethylmethacrylate (PMMA) microparticles crosslinked with carboxylic group-containing urethane acrylates (CUA) were produced by simple dispersion polymerization in methanol solution. In contrast to conventional crosslinkers, the CUA employed as a crosslinker was excellent for maintaining the monodispersity of PMMA microparticles even at moderate crosslinker concentrations (to about 5 wt%). It was believed that the CUA helped form the monomer-swellable surface of primary particles, because of the structurally long tetramethylene oxide groups in the molecule. Carboxylic groups in the molecular backbone resulted in larger primary particles by increasing the solubility of the monomer mixture in the medium. Owing to these larger primary particles, the crosslinked PMMA particles showed lower polymerization rates than the linear ones during particle growth. However, at high CUA concentrations (about 10 wt%), bimodal distributions were observed. This was attributed to the high crosslinking density of the primary particle surfaces. Therefore, monomer diffusion toward the polymer phase was restricted, resulting in more favorable secondary nucleation in the medium. Received: 12 May 1998 Accepted: 19 August 1998  相似文献   

18.
Particle nucleation in the polymerization of styrene microemulsions was found to take place throughout the polymerization as indicated by measurements of the particle number as a function of conversion. A mechanism based on the nucleation in the microemulsion droplets was proposed to explain the experimental findings although homogeneous nucleation and coagulation during polymerization were not completely ruled out. A thermodynamic model was developed to simulate the partitioning of monomer in the different phases during polymerization. The model predicts that the oil cores of the microemulsion droplets were depleted early in the polymerization (4% conversion). Due to the high monomer/polymer swelling ratio of the polymer particles, most of the monomer resides in the polymer particles during polymerization. The termination of chain growth inside the polymer particles was attributed to the chain transfer reaction to monomer. The low n? (less than 0.5) of the microemulsion system was attributed to the fast exit of monomeric radicals.  相似文献   

19.
Precipitation polymerization of styrene (St)–divinylbenzene (DVB) has been carried out using acetonitrile/1‐propanol mixture as the reaction media and 2,2′‐azobisisobutyronitrile (AIBN) as initiator. Monodisperse micron‐sized poly(St‐co‐DVB) microspheres with clean and smooth surface were synthesized in the absence of any stabilizing agent such as surfactants or steric stabilizers. The effects of various polymerization parameters such as 1‐propanol fraction in the reaction media, initiator and total monomer concentration, DVB content, polymerization time and polymerization temperature on the morphology, particle size and size distribution were investigated. It was found that smoothly shaped stable particles were obtained when less than 70 vol% of 1‐propanol was used in the media. The particle size increased with the AIBN concentration, whereas the change of uniformity was less obvious. Monodisperse microspheres were obtained when the total monomers loading ranged from 0.5 to 3 vol%. The particle diameter ranged from 2.73 to 1.87 µm with an increasing DVB content and the uniformity was enhanced. In addition, the yield of microspheres increased with the increasing total monomer, initiator, and DVB concentration and polymerization time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Thermosensitive crosslinked polymer latexes have been synthesized by precipitation polymerization of N-isopropylmethacrylamide (NIPMAM) as a main monomer, methylene bis-acrylamide (MBA) as a crosslinker, and potassium persulfate (KPS) as the initiator. Polymerizations kinetics were first investigated by studying both the influence of crosslinker (MBA) and initiator (KPS) concentrations and temperature effects on the polymerization conversion, the particle size, and water-soluble polymer (WSP) as a function of time. Particle size analysis by Scanning Electron Microscopy (SEM) showed that a short nucleation step afforded the synthesis of highly monodispersed latexes. In addition, a strong dependence of WSP formation on MBA and KPS concentration and polymerization temperature was found, as well. Comparison of particle size by SEM and quasielastic light scattering clearly evidenced the dramatic effect of temperature on particle size. Lower critical solubility temperatures (LCST) of latexes were determined and compared. Finally, based on these results, the mechanism of particle formation in this polymerization process is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1823–1837, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号