首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This article, the second part of this series, concerns the development of an analogy between the peel behavior of pressure-sensitive adhesives and the dynamic mechanical properties of the corresponding copolymers. The adhesive copolymers used were synthesized by emulsion polymerization processes. Their physical and dynamic mechanical properties were characterized and presented in Part I of this series. In this study, an analogy was built up between the force in a peel test as a function of peel velocity, Fp(vp), and the loss modulus of the adhesive as a function of the angular frequency in a dynamic mechanical experiment, G″(ω). This was done by superimposing the curves of Fp versus vp and those of G″ versus ωβ0/β, where β0/β is a shift factor with β being a parameter in the Kaelble theory and β0 being some reference value of the Kaelble parameter. When the curves of Fpvp and those of G″ ~ ωβ0 were plotted together, they followed the same trend of variation. This analogy between G″(ωβ0/β) and Fp(vp) was further confirmed by the fact that the apparent activation energies of the primary glass transition for G″(ω) and Fp(vp) are virtually the same, suggesting that the analogy between G″(ω) and Fp(vp) is dictated by the glass transition. The existence of the above-mentioned analogy between G″(ω) and Fp(vp) shows that the performance of an adhesive can be evaluated or predicted from the dynamical loss modulus of the corresponding (co)polymer. ©1995 John Wiley & Sons, Inc.  相似文献   

2.
A series of novel structured latex particles with interpenetrating polymer network (IPN) cores and glassy SAN shells were developed in an attempt to investigate the feasibility of these polymers as both toughening and damping agents in thermoplastics. The IPN cores were composed of one impact part (polybutadiene based) and one damping part (acrylic based, with Tg around +10°C). The particle morphologies of these polymers were determined by TEM. The glass transitions and mechanical behavior of the polymers were characterized from DMS. The effect of different components on the final core/shell particle morphologies and mechanical properties was studied. The mechanical behavior of core/shell particles with IPN cores was also compared with that of separate core/shell and multilayered core/shell particles. In addition, normal core/shell synthesis (rubbery part first then the glassy part) and inverted core/shell synthesis (glassy part first then the rubbery part) were performed to provide another access for morphology control. It was found that the core/shell latex particles with poly(butyl acrylate) based copolymers are more miscible than poly(ethylhexyl methacrylate)-based copolymers. The high grafting efficiency of poly(butyl acrylate) plays an important role in governing phase miscibility. The latex particles synthesized by the inverted core/shell mode showed higher miscibility than the normal synthesized ones. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2193–2206, 1997  相似文献   

3.
Composite polyacrylate latex particles were prepared through a simple method by dissolving organosilicon monomer methyltrimethoxysilane in a monomer mixture of acrylic monomers methyl methacrylate (MMA), n‐butyl acrylate (n‐BA), and acrylic acid (AA). With the addition of water needed for hydrolysis, methyltrimethoxylsilane hydrolyzed under catalysis by AA and further condensed to form polymeric methylsilsesquioxane (MSQ). The monomer mixture containing in situ‐formed MSQ was then subjected to emulsification and emulsion polymerization. Transmission electron microscopy (TEM) images showed that the obtained latex particles had a core–shell structure. Differences between the X‐ray photoelectron spectroscopy (XPS) results of the contents of silicon atoms on surfaces of films formed at temperatures above and below glass transition temperatures (Tgs) of polyacrylate evidenced that the cores were made up of MSQ and the shells were made up of polyacrylate. The static water contact angle measurements indicated that the incorporation of MSQ can result in composite latex with higher hydrophobicity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Summary: Pressure-Sensitive Adhesives (PSAs) are used for many applications (e.g. tapes and labels), and the market is still growing as new applications are regularly discovered. Emulsion polymerization is widely used to produce water-based PSAs. In this work, the influence of morphology, diameter and acrylic acid concentration in the particles on adhesion properties (peel, tack and shear) was studied. To do so, two series of homogeneous and core-shell latex particles of poly(butyl acrylate-2-ethyl-hexyl acrylate) with different concentrations of acrylic acid (0, 1, 3 and 5 wt%) and three different average diameters, were synthesized by means of emulsion polymerization techniques. The materials were characterized by dynamic light scattering, zeta potential and transmission electronic microscopy. The contents of acrylic acid in the polymer and dispersed medium were determined and the higher quantity of it was found within the particles. The best equilibrium between adhesion properties was found in the core-shell particles with 3 wt% of AA.  相似文献   

5.
The use of magnetic latex particles as solid support in biomedical applications is favourable when homogeneous and well-defined core–shell polymer particles are used. Accordingly, this paper concerns with the synthesis of magnetic poly(styrene–divinylbenzene) latex particles using emulsion polymerization of styrene (St) and divinylbenzene (DVB) monomers in the presence of preformed oil in water organic ferrofluid emulsion droplets as seed. The key parameters which affect on formation and morphology of the prepared magnetic latexes were investigated, including type of magnetic emulsion, St/DVB monomers ratio, DVB amount, type of initiator and surfactant nature. In this study, two different magnetic emulsions were used, low and high octane content magnetic emulsions. The magnetic emulsions were stabilized using different types of surfactants including AP, Triton X 405 and SDS. In addition, four different initiators, including AIBN, V50, ACPA and KPS were examined. The morphology of the prepared magnetic latexes was investigated using transmission electron microscopy. In addition, particle size and size distribution, magnetic content and magnetic properties of the prepared magnetic latexes were also examined, using various techniques, e.g. dynamic light scattering, thermal gravimetric analysis and vibrating sample magnetometer, respectively. The results showed that the morphology type (Janus like, moon like and/or core–shell) of the prepared magnetic latex particles could be controlled depending mainly on the used formulation. In fact, the use of styrene monomer leads to anisotropic morphology. Whereas, the progressive use of DVB in presence of KPS intiator leads to a well-defined magnetic core and polymer shell structure.
Figure
  相似文献   

6.
Poly(acrylic acid‐co‐sodium acrylate)/zinc oxide, P(AA‐SA)/ZnO, composite latex particles were synthesized by inverse miniemulsion polymerization. The ZnO nanoparticles were prepared by hydrothermal synthesis and undergone oleic acid (OA) surface treatment. The X‐ray diffraction pattern and FT‐IR spectra characterized the crystal structure and functional groups of OA‐ZnO nanoparticles. An appropriate formulation in preparing P(AA‐SA) latex particles, ensuring the dominant in situ particle nucleation and growth, was developed in our experiment first. Sodium hydroxide was chosen as a costabilizer, because of its ability to increase the deprotonation of acylic acid and enhance the hydrophilicity of monomer, acrylic acid besides providing osmotic pressure. The growth mechanism of P(AA‐SA)/ZnO composite particles was proposed. The OA‐ZnO nanoparticles were adsorbed on or around the surface of P(AA‐SA) latex particles by hydrophobic interaction, thus enhanced the interfacial tension over latex particles. The P(AA‐SA)/ZnO composite latex particles owned better thermal stability than pure latex particles. The pH regulation capacity was excellent for both ZnO and P(AA‐SA) particles. Combining P(AA‐SA) and ZnO nanoparticles into composite particles, the performance in pH regulation and UV shielding was discussed from our experimental results. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8081–8090, 2008  相似文献   

7.
The adhesive and rheological properties of model acrylic pressure-sensitive adhesive (PSA) films prepared from high solid emulsions with different particle sizes and distributions have been investigated with a customized probe tack apparatus. For each emulsion, the monomer composition and gel content were kept constant but different average particle sizes and distributions were used. Adhesive films 100 microm thick were then prepared from these emulsions and their rheological properties in the linear regime and adhesive properties were systematically characterized. Surprisingly, both the rheological and adhesive properties were found to be very dependent on the initial latex particle size distribution. A series of experiments were carried out to assess the adhesive properties of films made from blends of small- and large-particle-size latexes. Using the probe tack test, a maximum in adhesion energy of the dry films was found for 60% of small particles in the blend, a composition clearly different from that giving a minimum viscosity of the latex implying that optimizing for properties may not be equivalent to optimizing for processing in these adhesive applications. Finally, the adhesive properties of two multimodal latexes with different particle size distributions were investigated. Both gave significantly higher adhesion energies and clear evidence of a fibrillar detachment process. This important result suggests that the spatial distribution of gel domains in the dry film and the molecular connectivity between those gel domains also play an important role in controlling its adhesive properties.  相似文献   

8.
Copolymer latices of butylacrylate (BA) with acrylic and methacrylic acid (AA and MAA) were prepared by batch type emulsion polymerization, and, for comparison, copolymers with identical monomer composition were prepared by batch type solution polymerization.The distribution of the carboxylic monomers in the latex particles and the serum was studied by density gradient and sedimentation experiments with the analytical ultracentrifuge. Dynamic mechanical measurements of films of these copolymers were used to determine the storage and loss moduli as a function of temperature. From these measurements the position and extension of the glass transition range on the temperature scale is obtained. For heterogeneous emulsion copolymers with two glass transition temperatures the distribution of the carboxylic monomer units in the different copolymer phases can be determined. Electron microscopy of ultra thin cross-sections of stained films gave further insight into the film morphology.The combination of the results obtained with the different methods gives rise to the following clues: In the BA/AA latices about 40% (by weight) of the total AA used in the recipe are found in the serum as a water soluble polymer, about 50% are found to increase the glass transition temperatureT g of the bulk of the BA copolymer and, therefore, are thought to be incorporated into the interior of the latex particles, and the remaining 10% are, conclusively, located on the particle surface.In the BA/MAA latices no water soluble copolymer could be detected in the serum, about 90% of the MAA used is found in the bulk of the copolymer, and about 10% form a second hard phase on the surface of the latex particles.Dynamic mechanical measurements on the copolymer latex films show at least two phases with different glass transition temperatures: the bulk of the copolymer with a relatively low content of (M)AA units and a glass transition range at low temperatures, and a second (M)AA rich phase with a highT g.The latter phase forms a honeycomb-like structure surrounding the packed latex particles. That results in a three-dimensional network of polymer with a highT g extending throughout the latex film. In spite of the fact that this phase is built from a small fraction of the total copolymer only, it has a very pronounced influence on the performance behaviour of latex films.Dedicated to Professor Dr. R. Manecke on the occasion of his 70th birthday.  相似文献   

9.
The progressive dissolution of carboxylated latex particles with increasing pH was utilized to investigate the internal structure of core-shell latex particles, in comparison with that of copolymeric latex particles formed from the same monomers. The results indicated that in those latex particles which are formed when ethyl acrylate (EA) -methacrylic acid (MAA) or methyl acrylate (MA) -MAA mixture is polymerized in the presence of poly(MA-MAA) or poly(EA-MAA) seeds the shell is composed of the more hydrophilic poly(MA-MAA) molecules relatively high in MAA content and the core is composed of both poly(MA-MAA) and poly(EA-MAA) molecules, regardless of the order of the stage feed, while the copolymeric latex particles are relatively uniform from surface to center in distribution of all components except MAA. Examination of the distribution of the carboxylic groups in all of the latex particles showed their concentration to be highest at the surface and to decrease with proximity to the center in accordance with other findings reported in the literature.  相似文献   

10.
Nonpolymerizing latex particles surrounded by an aqueous phase saturated with monomer absorb only a finite amount of monomer, even if the monomer is a good solvent for the polymer, because the surface energy of each particle increases on swelling. At equilibrium the change in surface energy and the free energy of mixing exactly balance. Equations based on this thermodynamic principle predict with good accuracy the saturation swelling of crosslinked and uncrosslinked latex particles and the partitioning of monomer between the aqueous phase and latex particles at partial saturation. The available experimental data on swelling of latex polymers with monomers are reviewed. Earlier papers assumed that during emulsion polymerization the monomer concentration in the latex particles is independent of conversion as long as monomer droplets are present. This assumption is shown to be a justifiable approximation. The thermodynamics of the swelling of latex particles with a blend of two monomers is presented. The calculations indicate that copolymerization in emulsion should define reactivity ratios differing from those of homogeneous copolymerization by not more than 40% if the solubility of the comonomers in water is low. The reactivity ratio scheme is strictly applicable to emulsion copolymerization if the solvent properties of the two comonomers are identical.  相似文献   

11.
The effect of the presence of different amounts of block copolymers [polystyrene-block-poly(methyl methacrylate)] on the morphology of polystyrene/poly (methyl methacrylate) composite latex particles was investigated. The block copolymers were produced in situ by controlled radical polymerization (CRP) through the addition of the second monomer to a seed prepared by miniemulsion polymerization with a certain amount of a CRP agent. With an increase in the amounts of the block copolymers, the particle morphology changed from a hemisphere morphology (for a latex without block copolymers, i.e., without the use of a CRP agent during the polymerization) to clear core–shell morphologies as a result of decreasing polymer–polymer interfacial tension © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2484–2493, 2007  相似文献   

12.
A single-charge emulsion polymerization involving a monomer which is a good solvent for its polymer is considered. It is shown to be unlikely that within the polymerizing latex particles there are concentration gradients large enough measurably to affect the kinetics of the reaction. The average displacement of monomers due to Brownian motion within the latex particles and in the absence of concentration gradients is calculated. This diffusive mean free path, corresponding to an interval involving less than 1% change in conversion, is shown to be much longer than the radius of the latex particle. Consequently, loci where monomer concentration is perturbed by conversion to polymer are immediately swamped by unreacted monomer. Also, direct experimental evidence exists showing that the monomer concentration in latex particles is about the same when nonpolymerizing latex particles are saturated or during polymerization in the presence of monomer excess. The thermodynamics of saturation swelling preclude the possibility of the existence of large concentration gradients. The arguments that have been advocated in the literature for core–skin separation within polymerizing latex particles were based on conversion data which were thought to be linear with time, while a reexamination indicates that they were not. The observed core–skin separation obtained when butadiene or tritiated styrene were copolymerized with styrene in the presence of a polystyrene homopolymer seed latex has questionable relevance to single-charge homopolymerization. There are reasons to doubt that the distribution of co-monomers within latex particles can be frozen by their conversion to polymers in a two-stage emulsion polymerization.  相似文献   

13.
Atomic force microscopy studies on the adhesion between various novel poly(methyl methacrylate)/poly(acrylic acid)-based block copolymers and the proteins fibronectin and bovine serum albumin are presented for the first time. Random, diblock, and triblock copolymers exhibit distinct adhesion profiles although their chemical compositions are identical, implying that biomaterial nanomorphology can be used to control protein–polymer interactions and potentially cell adhesion.  相似文献   

14.
N‐substituted maleimides polymerize in the presence of a radical initiator to give polymers with excellent thermal stabilities and transparency. In this study, we synthesized various maleimide copolymers with styrenes and acrylic monomers to control their thermal and mechanical properties by the introduction of bulky substituents and intermolecular hydrogen bonding. Three‐component copolymers of N‐(2‐ethylhexyl)maleimide in combination with styrene, α‐methylstyrene (MSt), or 1‐methylenebenzocyclopentane (BC5) as the styrene derivatives, and n‐butyl acrylate, 2‐hydroxyethyl acrylate, 4‐hydroxybutyl acrylate, or acrylic acid as the acrylic monomers were prepared by radical copolymerization. These copolymers were revealed to exhibit excellent heat resistance by thermogravimetric analysis. Glass transition temperatures increased by the introduction of bulky MSt and BC5 repeating units. The mechanical properties of the copolymer films were improved by the introduction of intermolecular hydrogen bonding. Optical properties, such as transmittance, refractive index, Abbe number, and birefringence, were determined for the copolymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1569–1579  相似文献   

15.
Mixtures in various proportions of natural rubber (NR) and each of two tackifier resins, a poly-β-pinene and a modified pentaerythritol rosin ester, were used as the adhesive layer in joining a flexible polyester strip to a plane glass substrate. Measurements of the force required to peel the strip from the glass at a 90° angle were made over a range of pulling rates at several temperatures. Application of time-temperature superposition enabled a master curve of (reduced) peel force versus (log) pulling rate at a standard temperature (296 K) to be obtained for each adhesive composition. The master curves showed, in increasing order of pulling rate, some or all of four different modes of peeling: (i) peeling with viscous adhesive response, (ii) peeling with rubbery response, (iii) oscillatory or slip-stick peeling, and (iv) peeling with glassy adhesive response. In general, transitions between the different peeling modes were quite abrupt. Increase in concentration of tackifier resin caused displacement of the master curve toward lower pulling rates [an effect interpreted in terms of an increasing adhesive glass temperature (Tg)], and a superimposed displacement of the transition between peeling modes (i) and (ii) toward higher pulling rates-an effect attributed to reduction in adhesive average molecular weight. The influence of the tackifier resin in modifying the viscoelastic characteristics of the adhesive was further demonstrated in a comparison of the peel force master curves with corresponding master curves of dynamic storage modulus.  相似文献   

16.
In this work, tert-butyl peroxypivalate initiator was newly used in the solution polymerization of acrylic copolymers with 2-ethylhexyl acrylate, butyl acrylate, methyl methacrylate and acrylic acid monomers for application of pressure-sensitive adhesives (PSAs). Its proper dosage was determined to vary from 0.6 to 1.2 wt % when a high monomer conversion (>99%) was ensured. In this amount range, polymer properties and adhesive performance of the PSAs were investigated. The results indicated that with the amount of tert-butyl peroxypivalate increased, the molecular weights of the polymer decreased and the molecular weight distribution became wider. It was also observed that the synthesized PSAs had high interfacial adhesion and low cohesion strength, and thus exhibited cohesive failure during the peel test. So cross-linking agent was employed to improve the shear strength of the PSAs and to eliminate the adhesive residue while at the sacrifice of loop tack and peel strength. As a whole, the optimal performance was obtained by using 1.2 wt % amount of initiator and 0.5 wt % concentration of cross-linker. In this case, the peel and shear strength have achieved the best balance. In addition, for the cross-linked PSA tapes, the peel strength slightly decreased with the dwell time.  相似文献   

17.
Latex films involve polymers, copolymers and (or) polymer blends, with more or less complex morphologies. First of all, the mechanical behavior of their amorphous polymeric component is considered. A theoretical approach, which relates macroscopic behavior to molecular processes, is used to model its dynamic mechanical properties and also plastic behavior. Then, in the case of heterogeneous films, we propose that information about the morphology of samples can be deduced from a comparison of their measured viscoelastic properties with the corresponding properties calculated for a suitable model. After a brief review of the theoretical approaches for the mechanical behavior of multiphase systems, we show the validity of the procedure in the case of latex films obtained from different copolymerization pathways. Thus, it is possible (a) to get information about the morphology of binary systems, (b) to determine the stability of the morphology, and (c) to characterize a third phase as an interphase between nodules and matrix. High stress–strain behavior is discussed in the case of latex films reinforced with nanoparticles of silica or with cellulose whiskers.  相似文献   

18.
不饱和端基超支化聚合物/丙烯酸酯共聚乳液的研究   总被引:1,自引:0,他引:1  
利用Si—H加成反应制得了以CC为端基的超支化含硅聚合物,并将其与丙烯酸酯类单体进行乳液共聚,对聚合反应机理及所得聚合物的性能进行了测试分析.结果表明,含有大量CC端基的超支化含硅聚合物能与丙烯酸酯类单体稳定聚合,制得了平均粒径小于100nm高度交联的乳胶粒子.共聚物的红外光谱证实,超支化聚合物的不饱和端基已全部反应,形成了以超支化聚合物为多臂交联点的交联型乳胶粒子.随聚合体系中超支化聚合物用量的增加,乳液聚合反应速率增大,乳胶粒粒径减小,共聚物热稳定性显著提高.  相似文献   

19.
Hollow latex particles: synthesis and applications   总被引:8,自引:0,他引:8  
One of the major developments in emulsion polymerization over the last two decades has been the ability to make hollow latex particles. This has contributed many fundamental insights into the synthesis and the development of structure in particles. Hollow latex particles also enhance the performance of industrial coatings and potentially are useful in other technologies such as microencapsulation and controlled release. Ever since the publication of the initial process patents describing these particles, there has been a global R&D effort to extend the synthetic techniques and applications. One prominent synthetic approach to hollow particles is based on osmotic swelling. This dominates the literature, and usually starts with the synthesis of a structured latex particle containing an ionizable core that is subsequently expanded with the addition of base. Fundamental to this approach are a sophisticated control of transport phenomena, chemical reactivity within the particle, and the thermoplastic properties of the polymer shell. Hydrocarbon encapsulation technology has also been employed to make hollow latex particles. One approach involves a dispersed ternary system that balances transport, conversion kinetics, and phase separation variables to achieve the hollow morphology. Other techniques, including the use of blowing agents, are also present in the literature. The broad range of approaches that affords particles with a hollow structure demonstrates the unique flexibility of the emulsion polymerization process.  相似文献   

20.
We have designed a type of colloidal particle whose surface characteristics are sensitive to the pH of the aqueous phase in which they are dispersed. Particles of polystyrene latex stabilized by poly(acrylic acid) can act as stabilizers of aqueous foams by adsorbing at the air-water surface. Foams can be prepared and stabilized only at pH values below the isoelectric point where particles are either uncharged and flocculated or acquire a positive charge. At high pH where particles are anionic, no foam forms. This influence of pH on foamability and stability applies to both pH-dependent and pH-responsive systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号