共查询到20条相似文献,搜索用时 15 毫秒
1.
Leontine A. De Graaf Pieter-Jan W. Albers Martin Mller 《Journal of Polymer Science.Polymer Physics》1996,34(11):1839-1852
The adhesion behavior of semi-interpenetrating polymer networks (semi-IPNs) of linear polystyrene (PS) in crosslinked poly-2-ethylhexylmethacrylate (EHMA) was studied by variation of the bulk and surface morphology, i.e., domain size, continuity, and concentration in the domains. Semi-IPNs were prepared by liquid-liquid demixing upon cooling of a homogeneous solution of PS in methacrylate monomer, followed by gelation of the PS-rich phase and UV polymerization of the methacrylate resin. Welding of films allowed the preparation of larger objects provided that (1) the samples were phase separated to a high degree and contained domains with a high PS concentration (>90%) and (2) polystyrene was present at the interface. For semi-IPN films, a linear dependence of the adhesion strength on the (crack healing time)1/4 was obtained. Based on these considerations, a process was developed to obtain melt-processable semi-IPN particles, by quenching droplets of the polymer solution into a cold liquid. These particles obtained a PS-rich skin layer and showed good adhesion after blending with a thermoplast. © 1996 John Wiley & Sons, Inc. 相似文献
2.
Zheng-Yu Wang Mikio Konno Shozaburo Saito 《Journal of Polymer Science.Polymer Physics》1993,31(4):461-466
Suzuki's scaling theory for transient phenomena is applied to the calculation of the kinetics of phase separation in the early-to-intermediate stage based on a nonlinear theory proposed by Langer, Bar-on, and Miller (LBM). Calculated results are compared with experimental data on light scattering from a polymer blend system. Deviations from predictions of Cahn's linearized theory in the early time range of phase separation can be explained well by the proposed method of calculation. Nonlinear effects are found to play an essential role in characterizing the light scattering behavior of phase separation in the intermediate stage. Time evolutions of the single-point distribution function of composition are calculated, and the results are in good agreement with those reported in digital imaging analysis experiments and computer simulations of the time-dependent Ginzburg-Landau equation. The influence of asymmetry of free-energy on the single-point distribution function is also investigated in this study. © 1993 John Wiley & Sons, Inc. 相似文献
3.
A possible model for the formation of interpenetrating polymer networks is suggested. Phase separation is assumed to be faster than gelation. This implies that domains rich in either component grow first until late stages of spinodal decomposition. In these domains, short linear chains are crosslinked, leading to large branched macromolecules. Growth of the domains is slowed down by the presence of crosslinked polymers. It is assumed that it is stopped when the sizes of the domains and of the branched macromolecules are comparable. The resulting domains are significantly larger than the average distance between crosslinks. These results are supported by recent neutron scattering results on a poly(carbonate-urethane)/polyvinyl pyridine interpenetrating network. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1507–1512, 1998 相似文献
4.
An interpenetrating polymer network, IPN, is defined as a combination of two or more polymers in network form, at least one of which is polymerized and/or crosslinked in the immediate presence of the other(s). The synthesis, morphology and mechanical properties of recent works are reviewed, with special emphasis on dual phase continuity, and the number of physical entanglements that arise in homo-IPNs. The concepts of phase diagrams are applied, especially to simultaneous interpenetrating network phase separations and gelations. Recent engineering applications are discussed. 相似文献
5.
The epoxy resin/polyurethane semi-IPN was prepared and the glass transition behavior of the semi-IPN was discussed with DSC and DMA methods. The results show that the two glass transition temperatures (Tg) referring to epoxy resin and polyurethane respectively get closer. Between the two Tg there exists another Tg related to the interface between the two polymers. SEM indicates that this semi-IPN has a two-phase continuous structure which changes with different weight compositions. This is also proved by testing the Young's modulus. It is found that the IPN system has a cellular structure. Comparatively, the compatibility between the two polymers is the best when the weight ratio of EP/PU is 70/30. © 1996 John Wiley & Sons, Inc. 相似文献
6.
Peiguang Zhou H. L. Frisch L. Rogovina L. Makarova A. Zhdanov N. Sergeienko 《Journal of polymer science. Part A, Polymer chemistry》1993,31(10):2481-2491
Simultaneous IPNs of poly(dimethyl siloxane-urethane) (PDMSU)/poly(methyl methacrylate) (PMMA) and related isomers have been prepared by using new oligomers of bis(β-hydroxyethoxymethyl)poly(dimethyl siloxane)s (PDMS diols) and new crosslinkers biuret triisocyanate (BTI) and tris(β-hydroxylethoxymethyl dimethylsiloxy) phenylsilane (Si-triol). Their phase morphology have been characterized by DSC and SEM. The SEM phase domain size is decreased by increasing crosslink density of the PDMSU network. A single phase IPN of PDMSU/PMMA can be made at an Mc = 1000 and 80 wt % of PDMSU. All of the pseudo- or semi-IPNs and blends of PDMSU and PMMA were phase separated with phase domain sizes ranging from 0.2 to several micrometers. The full IPNs of PDMSU/PMMA have better thermal resistance compared to the blends of linear PDMSU and linear PMMA. © 1993 John Wiley & Sons, Inc. 相似文献
7.
The design of high-performance pervaporation membranes for the selective removal of ethanol from ethyl t-butyl ether (ETBE) was performed by using semi-interpenetrating polymer network (s-IPN) materials. The chosen linear polymer in the s-IPN was a cellulose ester, and the network was formed by photopolymerization of a dimethacrylate, or a dimethacrylate and one or two co-monomers. Membranes with good mechanical properties and moderate to good selectivity were obtained. Large permeability increases without loss in selectivity were observed with s-IPN films formed by cellulose propionate or cellulose butyrate interpenetrated by a network of poly(ethyleneglycol dimethacrylate). The use of dimethacrylate with longer spacers of the poly(ethoxy) type in these materials further increased the permeability. The permeation flux of cellulose acetate-based membranes is improved only when a methacrylate with poly(ethoxy) side chains is incorporated in the network by copolymerization with the poly(ethoxy)-type dimethacrylate. When the poly(ethyleneglycol dimethacrylate) in cellulose butyrate-based s-IPN films increases, the selectivity remains constant, while the film permeability goes through a maximum. The results are interpreted on the basis of a “plasticization” effect exerted on the linear polymer by interpenetrated networks composed of methacrylates with poly(ethoxy) chains. The resulting improved segment mobility favors the permeability at low network contents. The stability of s-IPN membranes in hot liquid mixtures was explained by extended entanglements of the linear polymer with the branches of the network meshes. © 1997 John Wiley & Sons, Ltd. 相似文献
8.
Thephasebehaviorinmultiplecomponentpolymersconstitutesalongstandingactiveacademicsubjectbothinpolymerscienceandcondensedstatephysics.Itisespeciallysignificantinguidingthefabricationofpolymeralloys[1].Duringthelastdecadesmuchattentionhasbeenpaidtothecom… 相似文献
9.
ABSTRACT The polymer/liquid-crystal composite materials have been extensively studied for their potential applications. Various optical devices based on this composite material have been proposed and realised. The device performance is highly dependent on the phase separation of this composite material. Here, we investigate the photopolymerisation-induced phase separation in this composite material. Depending on the mass ratios between the polymer and the liquid crystal, the phase separation can be well controlled and subsequently affect the morphological and electro-optical properties. At a fixed ratio, we can realise either phase-separated composite films or conventional polymer-dispersed liquid crystal films with completely different optical properties. By carefully controlling the exposure conditions, the morphologies and electro-optical properties have been studied and optimised in details. With in-depth studies and optimisation, the photopolymerisation-induced phase separation technique could be utilised to realise many different optical functions based on the polymer/liquid-crystal composite materials. 相似文献
10.
The thermal decomposition kinetics of polyurethane/polyethyl acrylate interpenetrating polymer networks (PU/PEA IPN) were studied by means of thermogravimetry and derivative thermogravimetry (TG-DTG), and compared with those of polyurethane (PU) and polyethyl acrylate (PEA). The decomposition temperature (T
i) of PU/PEA IPN was found to be higher thanT
i
of PEA, but lower thanT
i
of PU. Thermal decomposition kinetic parameters,n andE, estimated using Coats-Redfern method, are found for PU/PEA IPN, PU and PEA to be 1.6, 1.9 and 1.1, and 196.6, 258.6 and 139.2 kJ mol–1, respectively. The results show that PU/PEA IPN is neither a simple mixture of PU and PEA nor a copolymer of them. The mechanism of thermal decomposition of PU/PEA IPN is different from those of PU and PEA. The special network in PU/PEA IPN effectually protects weak bonds in the molecular chain of PU and PEA.We express our thanks to Dr. Yaxiong Xie and Zhiyuong Ren for their help in this work, 相似文献
11.
P. Menut Y.S. Su W. Chinpa C. Pochat-Bohatier A. Deratani D.M. Wang P. Huguet C.Y. Kuo J.Y. Lai C. Dupuy 《Journal of membrane science》2008,310(1-2):278-288
The formation of a surface liquid layer on the top of membrane forming systems made of poly(ether-imide) (PEI) and N-methylpyrrolidone (NMP) was clearly demonstrated during water vapor-induced phase separation (VIPS) through several in situ investigation methods including optical microscopy and dynamic water contact angle measurements for a qualitative approach, and Raman confocal and FTIR microscopy for a quantitative one. A mechanism involving the shrinkage from the polymer-rich phase consecutively to the surface phase separation is proposed to account for the significantly high concentration of PEI in the surface liquid layer. The emergence of a surface liquid layer during the phase separation process is discussed in terms of implications on morphology of membrane fabricated using VIPS and how it contrasts with liquid-induced phase separation. 相似文献
12.
Peiguang Zhou Harry L. Frisch H. Ghiradella 《Journal of polymer science. Part A, Polymer chemistry》1992,30(5):835-843
Simultaneous interpenetrating polymer networks (IPN's), pseudo IPN's, and liner blends of aliphatic poly(carbonate-urethane) (PCU) and polyvinyl pyridine (PVP) have been prepared and characterized by DSC, DMA, and TEM. The full IPN's of PCU and PVP had a single phase morphology only above 50 wt % PCU, as determined by both DSC and DMA and confirmed by transmission electron microscopy (TEM). However, in both pseudo IPN's of PCU and PVP and in their linear blends there exist multiple glass transitions and melting points seen by DSC and DMA indicating phase incompatibility. The full IPN's exhibited superior ultimate mechanical properties and solvent resistance as compared to the pseudo IPN's, liner blends, and the pure crosslinked PCU and PVP networks. 相似文献
13.
Thermoreversible gelation behavior of blend of poly(vinylidene fluoride) and poly(vinylidene fluoride-trifluoroethylene) in γ-butyrolactone solution was studied. Sol-gel transition temperature increased with the increase of polymer concentration, but was independent of the blend ratio of two polymers. An equation for gelation rate was derived, assuming that the gelation is a first-order reaction and that the gelation rate obeys an Arrhenius type. According to the equation, the growth index of gelation and supercooling temperature had a dominant effect on gelation rate. The growth index of gelation, which was calculated from the dependence of activation energy on the supercooling temperature in the isothermal gelation, varied with the blend ratio of two polymers. Growth index of gelation larger than 2 was obtained for the blend gels studied in this experiment. It may suggest that the multidimensional growth of gels occurs in such polymer blend solutions. X-ray diffraction and differential scanning calorimetry measurements showed existence of separate crystals due to each component of polymer in the blend gels. © 1996 John Wiley & Sons, Inc. 相似文献
14.
Time-resolved light-scattering measurements have been conducted to investigate the influence of a diblock copolymer additive on the phase boundaries and the kinetics of the phase separation of a polymer blend. The blend studied was a polystyrene-d8/polybutadiene (PSD/PB) mixture with a diblock copolymer composed of the same homopolymers. It was observed that the critical temperature of the blend, which has an upper critical solution temperature (UCST), decreased with increasing copolymer content and the kinetics of the phase separation via a spinodal decomposition mechanism slowed down in the presence of the copolymer. The features of the spinodal peak position and intensity as a function of time with and without copolymer additive were analyzed for near and off-critical compositions in various temperature jumps. The intermediate and late-stage growth rates do not follow a universal scaling function with the addition of diblock copolymers. © 1995 John Wiley & Sons, Inc. 相似文献
15.
Hironori Kaji Kazuki Nakanishi Naohiro Soga 《Journal of Sol-Gel Science and Technology》1993,1(1):35-46
Silica gels with well-defined pores both in micrometer and nanometer ranges were obtained by acid-catalyzed hydrolysis and polymerization of tetramethoxysilane in the presence of formamide. The micrometer-range structures of these gels are studied in terms of the phase diagram of the quasi two-component system, namely solvent-rich and silica-rich end compositions. The resulting interconnected structures and aggregates of particles are related to the occurrence of spinodal phase separation. The composition region that gave interconnected structures for the present system was much more limited and their characteristic sizes were much smaller than those for the previously reported systems containing an organic polymer. These results could be explained qualitatively by the effect of the degree of polymerization on the Flory-Huggins' type free energy change of mixing. 相似文献
16.
Polyurethane (PU) based on polyepichlorohydrin/poly(methyl methacrylate) (PECH/PMMA) interpenetrating polymer networks (IPNs) was synthesized by a simultaneous method. The effects of composition, hydroxyl group number of PECH, NCO/OH ratio and crosslinking agent content in IPNs were investigated in detail. Some other glycols, such as poly(ethylene glycol), poly(propylene glycol) and hydroxyl-terminated polybutadiene, were also used to obtain PU/PMMA IPNs. The interpenetrating and fracture behaviors of the IPNs are explained briefly. 相似文献
17.
Interpenetrating polymer networks (IPNs) of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) were prepared by simultaneous network formation. The PEO network was produced by acid-catlayzed self-condensation of α,ω-bis(triethoxysilane)-terminated PEO in the presence of small amounts of water. The PMMA network was formed by free radical polymerization of MAA in the presence of divinylbenzene as crosslinker. The reaction conditions were adjusted to obtain similar crosslinking kinetics for both reactions. An attempt was made to construct a phase diagram of the IPNs by measuring the composition of the IPNs at the moment of the appearance of the phase separation, as indicated by the onset of turbidity. This composition could be determined because the siloxane crosslinks of the PEO network could be hydrolyzed in aqueous NaOH with the formation of linear, soluble PEO chains. The phase diagram was compared with phase diagrams of blends of linear polymers and of semi-IPNs (crosslinked PMMA and linear PEO), obtained under similar conditions, i.e. polymerization of MMA in the presence of varying amounts of PEO. It was observed that the form of the phase diagrams of the linear polymers is similar to that of the IPNs, but is quite different from that of the semi-IPNs. Thus, homogeneous transparent materials containing up to 60% of PEO could be prepared in the blends and the IPNs, but in the semi-IPNs, phase separation occurred with PEO contents as low as 10%. 相似文献
18.
Patric Jannasch Helen Hassander Bengt Wessln 《Journal of Polymer Science.Polymer Physics》1996,34(7):1289-1299
Macro- and microphase separation of compatibilizing graft copolymers in melt-mixed polystyrene/polyamide-6 blends was studied by transmission electron microscopy and thermal analysis. Three different graft copolymers with main chains of polystyrene and side chains of poly(ethylene oxide) were used as additives at various concentrations. The polyamide-6 domain sizes decreased with increasing amounts of compatibilizing graft copolymers in the blends up to a saturation concentration, after which no further reduction was noted. Macrophase separation of the graft copolymers into discrete macrodomains 20–200 nm in size occurred at concentrations equal to or slightly lower than the saturation concentration. The macrodomains of the graft copolymers were microphase separated, and the sizes and shapes of the microdomains were found to largely depend on the graft copolymer structure and composition. As a consequence of microphase separation, poly(ethylene oxide) crystallinity was noted in blends with sufficiently high macrophase contents. Observations of a graft copolymer interphase between the polystyrene matrix and the polyamide-6 domains confirmed that the graft copolymer was present at the blend interfaces in some of the compatibilized blends. © 1996 John Wiley & Sons, Inc. 相似文献
19.
The phase separation of a crystalline and miscible polymer blend, poly(ε-caprolactone) /poly(styrene-co-acrylonitrile) (PCL/SAN), has been studied by differential scanning calorimetry (DSC), using a SAN containing 28.3% of acrylonitrile units. Several phenomena can be associated with the occurrence of phase separation depending upon the composition of the mixture. Following annealing at high temperatures, below and above the phase separation temperature Tc, three cases can be distinguished. In Case I, there is no sign of crystallization during quenching and DSC scanning, but a melting peak is observed at Tc, and above. In Case II, there is no crystallization on quenching but it does occur during the DSC run; the shift of the crystallization peak can then be related to Tc. In Case III, there is crystallization on quenching, and additional crystallization during the DSC run; the change of area of the crystallization peak is indicative of Tc. From these observations, the phase diagram of the system was determined. © 1993 John Wiley & Sons, Inc. 相似文献
20.
Porous polymer beads(PPBs) containing hierarchical bimodal pore structure with gigapores and meso-macropores were prepared by polymerization-induced phase separation(PIPS) and emulsion-template technique in a glass capillary microfluidic device(GCMD). Fabrication procedure involved the preparation of water-in-oil emulsion by emulsifying aqueous solution into the monomer solution that contains porogen. The emulsion was added into the GCMD to fabricate the(water-in-oil)-in-water double emulsion droplets. The flow rate of the carrier continuous phase strongly influenced the formation mechanism and size of droplets. Formation mechanism transformed from dripping to jetting and size of droplets decreased from 550 μm to 250 μm with the increase in flow rate of the carrier continuous phase. The prepared droplets were initiated for polymerization by on-line UV-irradiation to form PPBs. The meso-macropores in these beads were generated by PIPS because of the presence of porogen and gigapores obtained from the emulsion-template. The pore morphology and pore size distribution of the PPBs were investigated extensively by scanning electron microscopy and mercury intrusion porosimetry(MIP). New pore morphology was formed at the edge of the beads different from traditional theory because of different osmolarities between the water phase of the emulsion and the carrier continuous phase. The morphology and proportion of bimodal pore structure can be tuned by changing the kind and amount of porogen. 相似文献