首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Semi-interpenetrating polymer networks with well defined morphologies were obtained using a three-step process, separating morphology formation and polymerization/crosslinking. Different phase textures were formed when (spinodal) liquid/liquid demixing of a solution of atactic polystyrene in methacrylate monomers was arrested by thermoreversible gelation (vitrification) of the polymer-rich phase at a desired stage. Subsequent UV-polymerization of the methacrylate allowed to study the morphology by transmission electron microscopy. Phase diagrams of polymer solutions with low and high viscosities are reported. Depending on the initial solution viscosities and the applied cooling conditions, morphologies both with a dispersed as well with a continuous polystyrene phase could be obtained at PS concentrations already below 10 %. Mechanical measurements indicated only partial demixing in the semi-IPN's.  相似文献   

2.
The adhesion behavior of semi-interpenetrating polymer networks (semi-IPNs) of linear polystyrene (PS) in crosslinked poly-2-ethylhexylmethacrylate (EHMA) was studied by variation of the bulk and surface morphology, i.e., domain size, continuity, and concentration in the domains. Semi-IPNs were prepared by liquid-liquid demixing upon cooling of a homogeneous solution of PS in methacrylate monomer, followed by gelation of the PS-rich phase and UV polymerization of the methacrylate resin. Welding of films allowed the preparation of larger objects provided that (1) the samples were phase separated to a high degree and contained domains with a high PS concentration (>90%) and (2) polystyrene was present at the interface. For semi-IPN films, a linear dependence of the adhesion strength on the (crack healing time)1/4 was obtained. Based on these considerations, a process was developed to obtain melt-processable semi-IPN particles, by quenching droplets of the polymer solution into a cold liquid. These particles obtained a PS-rich skin layer and showed good adhesion after blending with a thermoplast. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
This paper studied the polymerization‐induced phase separation phenomenon (spinodal decomposition) in a model binary polymer solution under a linear spatial temperature gradient for the purpose of fabricating anisotropic polymeric materials by using mathematical modeling and computer simulation. Reaction kinetics were incorporated with the non‐linear Cahn‐Hilliard theory and the Flory‐Huggins free energy expression in the model. Moreover, the slow mode theory and Rouse law were used to account for polymer diffusion. It was found that an anisotropic morphology was obtained when a temperature gradient was imposed along the polymer solution sample. The direction of the structural anisotropy, however, depended significantly on the overall phase separation time. The presence of a temperature gradient along the polymer solution sample generated a spatial variation in polymerization rate, which resulted in a spatial variation of quench depth. Consequently, at a given instant, the phase separation at different locations of the polymer solution was at different stages of spinodal decomposition. The droplet size formed along the polymer solution was therefore dependent on the polymerization rate, the quench depth and the stage of spinodal decomposition. Furthermore, the spatial temperature gradient produced a spatial variation in the process induction time, which contains the polymerization induction time and phase separation induction time. It was also found that the polymerization induction time played a significant role on the spatial variation in the overall process induction time.

  相似文献   


4.
We report dynamic Monte Carlo simulations of polymer crystal nucleation initiated by prior spinodal decomposition in polymer solutions. We observed that the kinetic phase diagrams of homogeneous crystal nucleation appear horizontal in the concentration region below their crossovers with the theoretical liquid-liquid spinodal. When the solution was quenched into the temperature beneath this horizontal boundary, the time evolution of structure factors demonstrated the spinodal decomposition at the early stage of crystal nucleation. In comparison with the case without a prior liquid-liquid demixing, we found that the prior spinodal decomposition can regulate the nanoscale small polymer crystallites toward a larger population, more uniform sizes, and a better spatial homogeneity, whereas chain folding in the crystallites seems little affected.  相似文献   

5.
Composite particles comprising poly(2‐phenylethyl methacrylate) (PPhEMA) and imidazolium‐based poly(ionic liquid)s were prepared by suspension polymerization of 1‐vinyl‐3‐ethylimidazolium bis(trifluoromethanesulfonyl)amide as an ionic liquid monomer with dissolved PPhEMA. Not only PPhEMA exhibits lower critical solution temperature (LCST) behavior in 1‐vinyl‐3‐ethylimidazolium bis(trifluoromethanesulfonyl)amide but also the polymer blend in the bulk state exhibited LCST behavior. However, the composite polymer particles obtained after polymerization at 70°C maintained a homogeneous inner structure after heat treatment as the polymerization temperature was greater than the LCST in this system due to the formation of a cross‐linked structure during polymerization. When the composite particles were prepared by suspension polymerization at 30°C, their inner morphology changed from homogeneous to phase separated during the subsequent heat treatment. Moreover, the morphology transformation of the composite particles was dependent on the PPhEMA molecular weight. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Membrane formation from poly(bisphenol-A sulfone)/poly(vinyl pyrrolidone)/dimethylacetamide/water systems by phase inversion process using immersion–precipitation technique was investigated. The initial precipitation rate was determined from light transmission experiments and the membranes morphologies were observed by scanning electron microscopy (SEM). These results were used to explain an observed oscillatory behavior in macrovoid occurrence, as well as to identify the region where spinodal demixing dominates the early stages of the phase inversion process. It is proposed as a qualitative model dividing the solution in three different layers during the polymer solution mass exchange with the coagulation bath. Each layer is associated with different precipitation kinetics leading to distinct morphologies. The model assumes that the macrovoids development is a function of the resistances created by precipitation kinetics of former layers.  相似文献   

7.
The spinodal equation and the concentration-induced anisotropic-isotropic transition equation of the mixtures of thermotropic liquid crystals and flexible polymers have been studied by using the molecular field theory The calculations of the phase diagrams of this system show that,besides the isotropic classic spinodal curve,there ex ists an anisotropic spinodal curve which has not been reported in literature.These two spinodal curves can be linked up by the concentration-induced anisotropic-isotropic transition line.In the various phase regions,demixing may take place due to different phase separation mechanisms.The phase equilibrium curve cannot always join the.spinodal curve at a critical point.These results are considered very meaningful for the understanding of the special properties of liquid crystal/polymer composites and very useful for controlling the morphology and the performance of PDLC materials  相似文献   

8.
The structure and dynamics of early stage kinetics of pressure-induced phase separation of compressible polymer solutions via spinodal decomposition is analyzed using a linear Euler-Cahn-Hilliard model and the modified Sanchez Lacombe equation of state. The integrated density wave and Cahn-Hilliard equations combine the kinetic and structural characteristics of spinodal decomposition with density waves arising from pressure-induced couplings. When mass transfer rate is slower that acoustic waves, concentration gradients generate density waves that cycle back into the spinodal decomposition dynamics, resulting in oscillatory demixing. The wave attenuation increases with increasing mass transfer rates eventually leading to nonoscillatory spinodal demixing. The novel aspects of acousto-spinodal decomposition arise from the coexistence of stable oscillatory density dynamics and the unstable monotonic concentration dynamics. Scaling laws for structure and dynamics indicate deviations from incompressible behavior, with a significant slowing down of demixing due to couplings with density waves. Partial structure factors for density and density-concentration reflect the oscillatory nature of acousto-spinodal modes at lower wave vectors, while the single maximum at a constant wave vector reflects the presence of a dominant mode in the linear regime. The computed total structure factor is in qualitative agreement with experimental data for a similar polymer solution.  相似文献   

9.
添加剂对PVDF相转化过程及膜孔结构的影响   总被引:20,自引:0,他引:20  
研究了PVP、PEG及LiCl 3种成孔添加剂下PVDF DMAc H2 O 添加剂体系的成膜机理 .无论那种添加剂的铸膜液相转换成膜过程中都存在凝胶分相和液液分相两种相变方式 ,在 30~ 6 0℃时凝胶分相在较低的非溶剂浓度下先于液液分相发生 ,LiCl作为添加剂较PEG、PVP对铸膜液有较强的致凝胶作用 ,成膜过程中凝胶分相段时间依PVP、PEG、LiCl的顺序延长 ,导致液液分相初始分相点处聚合物浓度增大 ,阻止了大孔结构的充分发展 .制得的膜依PVP、PEG、LiCl的顺序有效孔隙率和通量降低 ,结晶度升高 .以LiCl为添加剂制得的膜几乎不改变PVDF膜的疏水性 ,而以PVP或PEG为添加剂的膜隔水压差降低约 2 0kPa .  相似文献   

10.
This paper describes a method to obtain polymer blends by the absorption of a liquid solution of monomer, initiator, and a crosslinking agent in suspension type porous poly(vinyl chloride) (PVC) particles, forming a dry blend. These PVC/monomer dry blends are reactively polymerized in a twin‐screw extruder to obtain the in situ polymerization in a melt state of various blends: PVC/poly(methyl methacrylate) (PVC/PMMA), PVC/poly(vinyl acetate) (PVC/PVAc), PVC/poly(butyl acrylate) (PVC/PBA) and PVC/poly(ethylhexyl acrylate) (PVC/PEHA). Physical PVC/PMMA blends were produced, and the properties of those blends are compared to reactive blends of similar compositions. Owing to the high polymerization temperature (180°C), the polymers formed in this reactive polymerization process have low molecular weight. These short polymer chains plasticize the PVC phase reducing the melt viscosity, glass transition and the static modulus. Reactive blends of PVC/PMMA and PVC/PVAc are more compatible than the reactive PVC/PBA and PVC/PEHA blends. Reactive PVC/PMMA and PVC/PVAc blends are transparent, form single phase morphology, have single glass transition temperature (Tg), and show mechanical properties that are not inferior than that of neat PVC. Reactive PVC/PBA and PVC/PEHA blends are incompatible and two discrete phases are observed in each blend. However, those blends exhibit single glass transition owing to low content of the dispersed phase particles, which is probably too low to be detected by dynamic mechanical thermal analysis (DMTA) as a separate Tg value. The reactive PVC/PEHA show exceptional high elongation at break (~90%) owing to energy absorption optimized at this dispersed particle size (0.2–0.8 µm). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
A phase diagram of poly(methyl methacrylate) in mixtures of water and 2‐propanol, individually nonsolvents for the polymer, was studied at 25 °C. For this system, there were two liquid–liquid demixing regions separated by a miscible region. This cosolvent phenomenon was thought to be a joint effect of the nonsolvents. The phase behavior was modeled according to modified Flory–Huggins chemical‐potential equations, which accounted for the possible contribution from a ternary interaction in terms of a lumped parameter, χ123. The calculated phase‐equilibrium curves (binodals) agreed well with the measured results. By contrast, if only binary interaction parameters were considered, computations yielded binodals whose compositions departed significantly from the measured data. Using the wet phase inversion method with casting dopes selected on the basis of the phase diagram, we prepared membranes with microporous structures in various coagulation baths. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 747–754, 2000  相似文献   

12.
Liquid–liquid phase separation and subsequent homogenization during annealing in an extruded poly(ethylene terephthalate) (PET)/poly(ethylene‐2,6‐naphthalate) (PEN) blend were investigated with time‐resolved light scattering and optical microscopy. In the initial stage, the domain structure was developed by demixing via spinodal decomposition. In the later stage, the blend was homogenized by transesterification between the two polyesters. The crystallization rate depended on the sequence distribution of polymer chains, which was determined by the level of transesterification rather than the composition change of separated phases. When the crystallization of PEN preceded that of PET, PEN showed a higher melting point. However, when the crystallization rate of PEN was slower than that of PET, the previously formed PET crystals suppressed the crystallization of PEN, causing the coarse crystalline structure of PEN to have a lower melting point. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2625–2633, 2000  相似文献   

13.
Liquid–liquid thermally induced phase separation of the polymer‐diluent system of poly(ethylene‐co‐vinyl alcohol) (EVOH)‐glycerol was examined under light scattering. For EVOH with an ethylene content of 38 mol % (EVOH38), maxima of the scattered light intensity were observed that indicated that phase separation occurred by the spinodal decomposition (SD). The growth of the structures formed by the general liquid–liquid phase separation obeyed a power‐law scaling relationship in SD. For EVOH with an ethylene content of 32 mol % (EVOH32), the liquid–liquid phase separation resulted from the polymer crystallization. In this case, the structure growth showed the characteristic behavior in which the crystalline particles were initially formed, and then the droplets formed by the liquid–liquid phase separation induced by the crystallization grew rapidly. Furthermore, the growth of the droplet by the phase separation was followed by an optical microscope measurement at a constant cooling rate. The phase‐separated structure formed after the crystallization can grow faster than that formed by the normal liquid–liquid phase separation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 194–201, 2003  相似文献   

14.
Scaffolds suitable for tissue engineering applications were prepared by Thermally Induced Phase Separation (TIPS) starting from a ternary solution PLLA/dioxane/water. The experimental protocol consisted of three consecutive steps, a first quench from the homogeneous solution to an appropriate demixing temperature (within the binodal region), a liquid-liquid demixing stage for a given time and a final quench from the demixing temperature to a low temperature (within the spinodal region). A large variety of morphologies, in terms of average pore size and interconnection were obtained upon modifying the demixing time and temperature, owing to the interplay of nucleation and growth processes during the residence in the metastable state. An interesting combination of micro and macro-porosity was observed for longer demixing times (above 30 min at 35 °C).  相似文献   

15.
The submicrometer structure of the temperature-sensitive hydrogels was observed by field emission scanning electron microscopy (FESEM), using synthesized hydrogels of different outer size and shape. The hydrogel structure strongly depends on the homogeneity of the polymer chains during the crosslinking process. A porous structure of the poly(vinyl-methyl-ether) (PVME) bulkgel, synthesized by electron beam irradiation of a concentrated polymer solution, was observed in the swollen state because the phase transitions temperature is acquired through the crosslinking process. Photo-crosslinking reaction of the poly(N-isopropylacrylamide) (PNIPAAm) copolymer in the dry state to form PNIPAAm thin films leads to a rather homogeneous structure. In the shrunk state both gels possess structure being more compact than in the swollen state. We also synthesized PVME and PNIPAAm gels with small outer dimensions in the range of some 100 nm. Heating of the thermo-sensitive polymer in diluted solutions collapses the polymer chains or aggregates. The crosslinking reaction (initiated by electron beam or UV irradiation) of these phase separated structures produces thermo-sensitive microgels. These microgel particles of PVME and PNIPAAm are spherical shape having diameters in the range of 30 - 500 nm.  相似文献   

16.
Abstract

Radical polymerization of methyl methacrylate (MMA) in the presence of propylbenzene, benzonitrile, their equimolar mixture, and a mixture of nematic liquid crystals (LC) was studied. Chain transfer reaction and unexpected dependence of the initial polymerization rate on LC concentration were revealed by means of UV spectrophotometry, viscometry, and dilatometry. The chain transfer reaction which occurred at the boundary of LC domains in the polymer matrix caused binding of some of the LC molecules to the macromolecules of PMMA. An increase in the initial rate of polymerization and a decrease of polydispersity were explained with formation of the LC phase because growth of the macroradicals continued not only in the homogeneous polymer phase but simultaneously also at the interfacial boundary between the polymer matrix and the LC phase. It is assumed that the LC molecules anchored to the PMMA matrix can affect the mobility of free LC molecules in the LC domains when an external electric field is applied to LC/polymer composite films.  相似文献   

17.
有无N-异丙基丙烯酰胺制备纳米微胶囊机理的比较   总被引:1,自引:1,他引:0  
通过研究交联剂对颗粒形态的影响, 提出小分子烃的逃逸是导致生成大量小尺寸实心粒子的主要原因, 而交联剂的加入在一定程度上能抑制小分子烃的逃逸. 将N-异丙基丙烯酰胺单体引入小分子烃为模板的细乳液聚合法制备的纳米微胶囊体系中, 水相引发形成的聚N-异丙基丙烯酰胺(PNIPA)齐聚物自由基在聚合温度下(大于最低临界溶液温度)析出并被细乳液液滴吸附, 在热力学推动力和静电斥力的共同作用下, PNIPA齐聚物倾向于分布在液滴和水的界面上, 使液滴界面成为主要的聚合场所, 单体从液滴内部向界面扩散补充消耗的单体, 生成的聚合物在液滴界面上析出, 包覆小分子烃液滴, 最终得到纳米微胶囊.  相似文献   

18.
GHD室温自交联乳液的聚合及贮存稳定性   总被引:4,自引:0,他引:4  
采用半连续种子乳液聚合技术合成了含甲基丙烯酸缩水甘油酯(GMA)、甲基丙烯酸羟乙酯(HEMA)和甲基丙烯酸二甲氨基乙酯(DMAEMA)的室温自交联乳液(GHD).实验结果表明,在甲基丙烯酸甲酯(MMA)-丙烯酸丁酯(BA)-GMA种子乳液存在下,聚合温度升高,聚合过程稳定性下降,但乳液的贮存稳定性提高;乳化单体滴加速度加快,种子聚合物的玻璃化温度升高,可减少聚合过程的交联凝聚作用,提高聚合过程的稳定性;而HEMA和DMAEMA用量增加对聚合过程的稳定性没有明显影响,但使乳液的贮存稳定性下降.官能团间的交联凝聚作用可能是影响室温自交联乳液聚合及贮存过程稳定性的关键因素.  相似文献   

19.
In this article the demixing instability and phase segregation in unentangled polymer solutions of semiflexible chains at high‐rate uniaxial extension above the coil to stretched coil transition was studied. Orientation of the stretched chains was described in terms of an effective potential field. Based on the free energy analysis it was shown that the flow‐induced orientation of polymer segments could drastically reduce the energy of their steric repulsion. As a result attraction between the chains gain more importance, and this effect lead to the demixing process and eventual segregation of polymer from the solvent if the strain rate exceeds some critical value. A mean‐field theory was developed to study this flow‐induced phase separation effect. The phase diagrams of the system showing the spinodal and binodal transitions at different extension rates were calculated and discussed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1066–1073  相似文献   

20.
Semi-interpenetrating polymer networks of varying composition are prepared by crosslinking polystyrene containing a small number of maleic anhydride groups (4.8 mol% of MA units) with hexamethylene-diamine (HMDA) in the presence of linear poly(vinyl methyl ether) (PVME). Lightly crosslinked samples are homogeneous at room temperature and show a phase behaviour similar to uncrosslinked blends, i.e. lower critical solution temperature (LCST) behaviour. The influence of crosslinking on the phase behaviour has been studied by small angle light scattering (SALS) and turbidity measurements. The cloud point strongly depends on the heating rate. The presence of the network reduces the stable single phase region in agreement to theory. In systems showing spinodal decomposition, it is expected that some concentration fluctuations will grow more rapidly than others resulting in a separated phase system which shows high degree of connectivity with characteristic dimensions. Using temperature jump experiments, SALS can be used to estimate parameters of the phase separation kinetics and the characteristic dimensions of the phases. In temperature jump experiments into the spinodal region a maximum in the scattered light intensity is observed with time at a certain scattering vector. However, the semi-IPN's develop no scattering maximum. This is explained by a damping of the thermodynamical dominant wavelength in spinodal decomposition in the network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号