首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
High polymer/surfactant weight ratios (up to about 15:1) of polystyrene microlatexes have been successfully produced by microemulsion polymerization using a small amount of polymerizable surfactant, ω-methoxypoly(ethylene oxide)40 undecyl α-methacrylate macromonomer (PEO-R-MA-40), and cetyltrimethylammonium bromide (CTAB). After generating “seeding particles” in a ternary microemulsion containing only 0.2 wt% CTAB and 0.1 wt% styrene, the additional styrene containing less than 1 wt% PEO-R-MA-40 was added dropwise to the polymerized microemulsion for a period of about 4 h at room temperature. PEO-R-MA-40 copolymerized readily with styrene. The stable microlatexes were bluish-transparent at a lower polymer content and became bluish-opaque at a higher polymer content. Nearly monodisperse latex particles with diameters ranging from 50 to 80 nm and their molar masses ranging from 0.6 to 1.6 × 106 g/mol could be obtained by varying the polymerization conditions. The dependence of the number of particles per milliliter of microlatex, the latex particle size and the copolymer molar mass on the polymerization time is discussed in conjunction with the effect of the macromonomer concentration. Received: 25 October/2000 Accepted: 2 February 2001  相似文献   

2.
The mechanism of growth of latex particles in the emulsion polymerization of vinyl acetate using a polymerizable surfactant, sodium dodecyl allyl sulfosuccinate (TREM LF-40; Henkel) was investigated. Both the aqueous phase and the particle/water interface were found to be loci for the copolymerization of TREM LF-40 with vinyl acetate. Competitive growth experiments using TREM LF-40 and its nonpolymerizable derivative were conducted to separate the effects of aqueous phase and particle surface. Particle size analysis of the seeded and unseeded polymerizations coupled with kinetic results suggested that the reactions at the particle/water interface are more important and that the particle size of the latexes is a key parameter controlling the polymerization rate through copolymerization and chain transfer to the polymerizable surfactant at the particle surface. A decrease in particle size lead to an increase in the amount of TREM LF-40 polymerized at the particle surface and to a decrease in polymerization rate. © 1992 John Wiley & Sons, Inc.  相似文献   

3.
A polymerizable surfactant, sodium dodecyl allyl sulfosuccinate (TREM LF-40; Henkel) and its nonpolymerizable counterpart were used in comparative studies of the emulsion polymerization of vinyl acetate. The conversion-time behavior differed for the two surfactants; the TREM LF-40 showed a decrease in the polymerization rate with increasing concentration while its hydrogenated derivative showed the opposite behavior, the rate increasing with increasing surfactant. Particle size analysis revealed a decreasing particle size with increasing surfactant concentration for both series of reactions. An explanation for the seemingly ambiguous results obtained for the polymerizable surfactant was sought by examining the reactivity of its vinyl group in copolymerization with vinyl acetate and its allylic group in a chain transfer reaction. The results suggest that both the copolymerization and chain transfer reactions can lead to the observed reduction in polymerization rate with increasing TREM LF-40 concentration. © 1992 John Wiley & Sons, Inc.  相似文献   

4.
Monomeric emulsifiers with different copolymerization reactivities were used as stabilizers in emulsion polymerization of styrene initiated by 2,2′ azobisisobutyronitrile (AIBN). A significant change in emulsifier function was observed between equal micellar concentrations of surface-active sodium sulfopropyl alkyl maleates and the corresponding sodium sulfopropyl dodecyl fumarate. In the presence of less reactive maleates, copolymerization mainly occurs in the interface of the monomer swollen particles, while copolymerization with the fumarate in the first period of emulsion polymerization leads to polyelectrolyte formation in the water phase.  相似文献   

5.
A mathematical model was developed to aid in the further understanding of the growth of latex particles in the emulsion polymerization of vinyl acctate using a polymerizable surfactant, sodium dodecyl allyl sulfosuccinate (TREM LF-40). The model incorporates the main features of the system observed experimentally: copolymerization in the aqueous phase, at the particle surface, and chain transfer to TREM LF-40. The reactions at the particle/water interface and, more specifically, the chain transfer to TREM LF-40 leading to a decrease in the average number of radicals per particle, was found to be the most significant mechanism for explaining the difference in kinetic results found for TREM LF-40 and its nonpolymerizable counterpart. The copolymerization of vinyl acetate with TREM LF-40 was also shown to slow the overall polymerization rate. However, the copolymerization alone was not sufficient to account for the decreased polymerization rates observed experimentally. A combination of copolymerization and chain transfer to TREM LF-40 was found to provide a good fit of the experimental results. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
The emulsion polymerization of styrene was studied using the nonionic surfactant Triton X-405 (octylphenoxy polyethoxy ethanol). Two separate nucleation periods were noted in these polymerizations resulting in bimodal final latex particle size distributions. The partitioning of the surfactant between the phases was found to play the major role in determining the nucleation mechanism(s) in these polymerizations. Although the total concentration of the emulsifier was always added at a level above its critical micelle concentration (CMC) based on the water phase in the recipe, it was found that the portion of the surfactant initially present in the aqueous phase was below its CMC due to the partitioning. This CMC was also found to increase with increasing total surfactant because the distribution of the surfactant (varying ethylene oxide chain length) depended on the partitioning between the phases. Under these conditions, the first of the two nucleation periods was attributed to homogeneous nucleation, while the second was attributed to micellar nucleation. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3813–3825, 1997  相似文献   

7.
Two polymerizable surfactants (surfmers), namely, monododecyl itaconate (MDDI) and monocetyl itaconate (MCI), were synthesized by reacting itaconic anhydride with 1‐dodecanol and cetyl alcohol, respectively. A series of uncrosslinked and crosslinked surface‐carboxylated latexes were prepared from styrene and styrene–divinylbenzene, respectively, using varying amounts of these two surfmers. The latexes were characterized by gravimetry, dynamic light scattering, and conductometric titration in order to obtain the conversion, particle size distribution, and concentration of surface carboxyl groups, respectively. The size of latex varied between 41–72 nm and was seen to depend inversely on the surfmer concentration. In the case of the soluble polystyrene latexes, solution 1H NMR spectra provided conclusive evidence for surfmer incorporation into the polymer chain. Comparison of the incorporation levels determined by NMR with the surface carboxylic acid concentrations in the latexes, determined by conductometric titrations, revealed that the majority of the surfmers, as ancticipated, were present on the latex surface. The study of the stability of the latexes to varying salt concentrations clearly demonstrated that the smaller‐size latexes having higher surface carboxyl group density exhibited far improved stability when compared with the larger‐size ones having lower surface carboxyl group density. Similarly, enhanced freeze‐thaw stability was also observed for the smaller‐size latexes. MCI‐based latexes exhibited marginally improved stability compared with those prepared using MDDI, which again seems to be because of the higher surface functional group density in the former. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3257–3267, 2005  相似文献   

8.
The emulsion polymerization of styrene using the reactive surfactant sodium dodecyl allyl sulfosuccinate (TREM LF‐40) was studied. The polymerization kinetics were found to be unusual in that Rp was not directly proportional to Np (RpNp0.67). Several reasons are stated to explain the unusual kinetics, including chain transfer to TREM LF‐40, copolymerization of styrene with TREM LF‐40, and the influence of the homopolymer of TREM LF‐40 [poly(TREM)] and/or the copolymer [poly(TREM‐co‐styrene)] on the entry and exit rates of free radicals. The possibility of both chain transfer and copolymerization exists primarily at the oil/water interface, whereas both can also occur in the aqueous and monomer phases. Bulk polymerizations of styrene in the presence of TREM LF‐40 and poly(TREM) were conducted, and the results show that the reaction rate decreased for the styrene/TREM LF‐40 system. Latex characterization by serum replacement and titration measurements provided evidence for the chemical bonding of TREM LF‐40 to the polymer particles. The fraction of chemically bound reactive surfactant decreased with increasing surfactant concentration and increased with increasing initiator concentration. Relatively high contact angles of water on films cast from the latexes showed that TREM LF‐40 did not migrate significantly to the surface of the film, which was consistent with the latex‐surface characterization results. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3093–3105, 2001  相似文献   

9.
An emulsifier-free fluorinated polyarcylate emulsion was synthesized by a seed emulsion polymerization method from methyl methacrylate (MMA), butyl acrylate (BA) and hexafluorobutyl methacrylate (HFMA) in the presence of a polymerizable emulsifier—ammonium allyloxtmethylate nonylphenol ethoxylates sulfate (DNS-86). Influences of the DNS-86 level on electrolyte stability of the emulsifier-free emulsion were discussed. In addition, the emulsion and the films were characterized by Fourier transformed infrared (FT-IR) spectrometry, nuclear magnetic resonance (1H NMR) spectrometry, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), thermogravimetry (TG), and contact angle (CA) analysis, respectively. The FT-IR spectra and 1H NMR spectrum showed that HFMA was effectively involved in the emulsion copolymerization and monomers formed the fluorine-containing acrylate copolymer. The resulted emulsion particles had a core–shell structure and a narrow particle size distribution. XPS and CA analysis revealed that a gradient concentration of fluorine existed along the depth profile of the fluorine-containing emulsion film. One side of the film was richer in fluorine and more hydrophobic than the other side. The film formed from the fluorine-containing emulsion showed higher thermal stability than that of the fluorine-free emulsion.  相似文献   

10.
The batch emulsion polymerization kinetics of styrene (St) initiated by a water-soluble peroxodisulfate in the presence of a nonionic emulsifier was investigated. The polymerization rate versus the conversion curves showed two nonstationary rate intervals, two rate maxima, and Smith–Ewart Interval 2 (nondistinct). The rate of polymerization and number of nucleated polymer particles were proportional to the 1.4th and 2.4th powers, respectively, of the emulsifier concentration. Deviation from the micellar nucleation model was attributed to the low water solubility of the emulsifier, the low level of the micellar emulsifier, and the mixed modes of particle nucleation. In emulsion polymerizations with a low emulsifier concentration, the number of radicals per particle and particle size increased with increasing conversion, and the increase was more pronounced at a low conversion. By contrast, in emulsion polymerizations with a high emulsifier concentration, the number of radicals per particle decreased with increasing conversion. This is discussed in terms of the mixed models of particle nucleation, the gel effect, and the pseudobulk kinetics. The formation of monodisperse latex particles was attributed to coagulative nucleation and droplet nucleation for the polymerizations with low and high emulsifier concentrations, respectively. The effects of the continuous release of the emulsifier from nonmicellar aggregates and monomer droplets, the close-packing structure of the droplet surface, and the hydrophobic nature of the emulsifier on the emulsion polymerization of St are discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4422–4431, 1999  相似文献   

11.
The effect of the polymerizable surfactant, sodium dodecyl allyl sulfosuccinate (JS-2), on the stability of polybutyl acrylate latex particles during semibatch emulsion polymerization was investigated in this work. Experimental data show that the ionic strength is the most important parameter in determining the latex stability during the reaction. Both the amount of coagulum produced by intensive coagulation and percentage of the particle volume change (ΔV) caused by limited flocculation increase with increasing electrolyte concentration. The parameter Δ V increases significantly when the concentration of JS-2 in the initial reactor charge ([JS-2]i) increases. The amount of coagulum increases rapidly when the agitation speed is increased from 400 to 800 rpm. Experiments of coagulation kinetics were carried out to study the stability of latex products toward added salts. The experimental data show that the chemical stability of the latex product increases with increasing pH. Furthermore, the critical coagulation concentration and diffuse potential increase with increasing [JS-2]i. It is postulated that the increasing electrostatic attraction force between two approaching particles due to the increased [JS-2] i can increase the apparent magnitude of Hamaker constant.  相似文献   

12.
Stable high‐solids‐content methyl methacrylate/butylacrylate latexes with small particle sizes (in the range of 150–180 nm) were obtained with a nonionic polymerizable surfactant (surfmer). Three percent of surfmer with respect to monomer was proven to be enough for the stabilization of the latexes. The influence of different operational variables on the stabilization of the final latex was analyzed, and the conditions needed to obtain coagulum‐free latex were assessed. The inorganic potassium persulfate/sodium metabisulfite initiator system provided better stability than the organic tert‐butyl hydroperoxide/ascorbic acid as a result of the end groups. In addition, the feeding of acrylic acid during the second half of the polymerization improved the stability of the final latex. The reduction of the feeding time was effective in the stabilization. Proof of the surfmer incorporation into the particles is presented. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1552–1559, 2002  相似文献   

13.
Emulsion copolymerization of Tribromophenyl Maleimide (TBPMI) and styrene was conducted by semi-batch and batch processes. The effects of monomer composition and copolymerization method on copolymerization rate, molecular weight and molecular weight distribution, latex particle size and size distribution, glass transition temperature (Tg), thermal stability and mechanical properties were investigated. A kinetic study has shown that the rate of copolymerization in the batch process increased with increasing TBPMI content in the monomer feed. For the semi-batch polymerized samples, molecular weight decreased and molecular weight distribution increased with increasing TBPMI content in the monomer feed. For the batch polymerized samples, molecular weight also decreased but no obvious tendency was observed for the molecular weight distribution when TBPMI content increased. Compared with the batch copolymers, the semi-batch copolymers have a higher molecular weight at the same initial monomer mixture composition. Latex particle size decreased, while particle size distribution slightly increased with increasing TBPMI content in both semi-batch and batch latices. The semi-batch samples exhibit only a single Tg, the value of which increses linearly with increasing TBPMI content. For the batch copolymers, two Tgs were found, reflecting a mixture of styrene-rich and TBPMI-rich copolymer chains. TGA results indicate that the thermal stability of the semi-batch copolymers increased with increasing TBPMI concentration. Young's and flexural moduli increased, while tensile and flexural strengths decreased by increasing the TBPMI content for both the semi-batch and batch specimens. The semi-batch specimens have higher tensile and flexural strenghts than the batch ones.  相似文献   

14.
Associating polymers have been prepared by radical copolymerization in water of acrylamide with a micelleforming cationic polymerizable surfactant. To estimate the locus of initiation, the polymerizations were carried out in the presence of initiators and radical inhibitors of various solubilities (water-soluble or oil-soluble), and the decay of inhibitor concentration has been monitored by electron spin resonance spectroscopy. Conversion–time curves simultaneously determined. The experimental data have been interpreted by taking into account the concentration and lifetime of the different radical species (primary radicals, oligoradicals, inhibitors), their partitioning between the micelles and the aqueous continuous phase, and the dynamics of the micellar system. Analysis of the data provided some insight into the copolymerization mechanism of these micellar systems.  相似文献   

15.
An emulsion polymerization of styrene in the presence of an amphoteric surfactant; N,N-dimethyl-n-laurylbetaine (LNB) was carried out at pH 7.0. The polymerization rate and the concentration of the latex particle were proportional to the LNB concentration of 0.6 power. The latex particle sizes became smaller with increasing concentrations of LNB. The molecular weights of polystyrene latices increased with the concentration of LNB. The zeta-potentials of latex particles were significantly dependent on the pH, and showed the existence of an isoelectric point.  相似文献   

16.
Emulsifier-free emulsion copolymerization of styrene (St) and acrylamide (AAm) has been investigated in the presence of an amphoteric water-soluble initiator, 2,2′-azobis[N-(2-carboxyethyl)-2-2-methylpropionamidine]hydrate (VA057). The kinetics of polymerization and the colloidal properties of the resulting latices were studied and compared with the cases using ionic initiators. When adopting the amphoteric initiator at pHs lower than 10, stable amphoteric poly (St/AAm) latices, evidenced by the electrophoretic mobility, were prepared directly. Meanwhile, almost the same conversion versus time curves appeared and there were no apparent differences in the final particle sizes for those polymerizations, whereas in the polymerization at pH 10, a much lower rate of copolymerization and a larger size of particles were observed. The surface charge density and the growth rate of latex particles produced with VA057 at pH<10 were comparable to those of the particles with a cationic initiator, 2,2′-azobis(2-amidinopropane)dihydrochloride, but were apparently lower than those with an anionic initiator, potassium persulfate, when the polymerizations were carried out under corresponding conditions. The number of initiator fragments incorporated onto the particle surfaces was independent of polymerization pH, except for pH 10. The abnormal performance of VA057 at pH 10 was attributed to its degradation due to hydrolysis. Received: 14 December 1999 Accepted: 22 February 2000  相似文献   

17.
红外光谱研究以非离子型表面活性剂所组成微乳液的水结构   总被引:11,自引:0,他引:11  
由烷基聚氧乙烯醚(AEO9)/正己醇/正十六烷/水所组成的微乳液,采用红外光谱对水内核的微观结构进行研究。以水分子的OH伸缩振动谱带, 由高斯分布曲线面积得出不同结构水的含量。只有少量水与表面活性剂结合, 另有部分水束缚于聚氧乙烯链段之间, 这些水与水相中的自由水呈动态平衡。当体系在剧烈振动后, 少量结合水转为束缚水, 静止后又恢复原状。  相似文献   

18.
The reaction ofn-hexylamine withO-alkylO-4-nitrophenyl chloromethylphosphonates in toluene solutions of poly(ethylene glycol)-600 monolaurate (PM) has been studied by spectrophotometry. The reverse micelles of the nonionic surfactant increase more than tenfold the observed rate constant of aminolysis. The catalytic activity of the surfactant is practically independent of the alkyl radical length of phosphonate. An increase in the concentration of amine results in a decrease in the catalytic efficiency. The character of the dependence of the rate constant on the concentration of PM is affected by the alkyl chain length of the substrate. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1735–1738, September, 1998.  相似文献   

19.
Densities, viscosities and tracer diffusion coefficients for solutions of the nonionic surfactants Triton X-45, X-114, X-100 and X-102 in water (except for Triton X-45) and methanol, and for Triton X-100 in three water-methanol mixtures have been measured at 298.15 K and 308.15 K. The activation energy for viscous flow and the contributions to it from solute and solvent have been calculated. Comparison of the Gibbs energies of these systems shows the roles of polyoxyethylene chains of Triton X molecules in the interactions between solute and solvent, and also the effects of solvents on the inter-actions for different solutes. The viscosityB coefficients are positive for all of the surfactant solutions, and the temperature coefficients ofB are negative. In the non-micellar solutions in methanol, values ofB are small and the temperature coefficient ofB is nearly zero. In water-methanol mixtures the critical micelle concentration becomes larger as the methanol content increases up to 40% w/w; micelles are not formed at higher methanol concentrations. TheB coefficient decreases with increasing proportion of methanol in the solvent, and the temperature coefficient ofB changes from a fairly large positive value at low methanol contents to a small negative value at 80% w/w methanol.  相似文献   

20.
Nanosized polystyrene latexes with high polymer contents were obtained from an emulsifier-free process by the polymerization of styrene with ionic comonomer, nonionic comonomer, or both. After seeding particles were generated in an initial emulsion system consisting of styrene, water, an ionic comonomer [sodium styrenesulfonate (NaSS)] or nonionic comonomer [2-hydroxyethyl methacrylate (HEMA)], and potassium persulfate, most of the styrene monomer or a mixture of styrene and HEMA was added dropwise to the polymerizing emulsion over 6 h. Stable latexes with high polystyrene contents (≤25%) were obtained. The latex particle weight-average diameters were largely reduced (41 nm) by the continuous addition of monomer(s) compared with those (117 nm) obtained by the one-pot polymerization method. Latex particles varied from about 30 to 250 nm in diameters, whereas their molar masses were within 104 to 105 g/mol. The effect of the comonomer concentration on the number of polystyrene particles per milliliter of latex and the weight-average molar masses of the copolymers during the polymerization are discussed. The surface compositions of the latex particles were analyzed by X-ray photoelectron spectroscopy, which indicated that the surface of the latex particles was significantly enriched in NaSS, HEMA, or both. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1634–1645, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号