首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aromatic polyamides and polyimides with improved gas permselectivity, can be designed and prepared by systematically changing structural elements that affect these properties. Indeed, a conscientious choosing of the chemical changes may still provide a promising approach to get better and better polymers for selective filtration of gases. The results of this work, in which novel monomers have been used, have confirmed that gas permeability through aromatic polyamides and polyimides much higher than that of conventional polyamides and polyimides can be achieved. It has been done by introducing bulky side groups, using non-planar monomers, and combining these elements on both monomers: diamines and dianhydrides or diamines and diacids. A theoretical study has also been made to explain the behaviour of some individual polymers, comparing experimental and calculated values of density and free volume.  相似文献   

2.
Permeability measurements for oxygen and nitrogen were carried out on a series of structurally similar polyimides in order to define structure/permeability relationships. The polyimides were prepared from 5,5′-[2,2,2-trifluoro-1-(trifluoromethyl) ethylidene] bis-1,3-isobenzofuranedione (6FDA) and a variety of substituted methylene dianilines and benzidines. A correlation between the diamine monomer structure and polymer permeability was found, particularly with diamine monomer variations at the ortho positions of the diamine relative to the amino moiety. These correlations were semilogarithmic, relative to the summation of the substituent volumes. Direct correlations were observed between the measured properties of polymer density and interchain d-spacings and the oxygen permeability value of each of these polyimides. In addition, we observed that the calculated values of fractional free volume were related to oxygen permeability in a manner which enabled us to identity a polar component in the effects of these ortho substituents. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
Emission mechanism in an aromatic polyimide, PI(BPDA/PDA), derived from biphenyltetracarboxylic dianhydride and p-phenylene diamine were studied with ultraviolet visible absorption and fluorescence spectra of a series of the model compounds. The excitation spectrum of the intermolecular charge-transfer (CT) fluorescence peaking around 550 nm of PI(BPDA/PDA) thin film was completely consistent with the absorption spectrum, indicating that the intermolecular CT fluorescence emission of PI(BPDA/PDA) film is not caused by direct excitation of the CT absorption band, but by light absorption due to structural units in the polymer backbone. The UV-vis. absorption spectra of the model compounds corresponding to the structural units in PI(BPDA/PDA) showed that the longest wavelength absorption band is due to the biphenylbisimide moiety. The band was assigned as π, π* transition with the polarization spectrum of the model compound. The fluorescence spectra of the model compounds changed sensitively depending on the conformation around N-phenyl bond. The lifetime measurement for the model compounds suggested that intramolecular CT process occurs very rapidly. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Gas permeability and permselectivity are investigated for polybenzoxazoles from bis(3-amino-4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane (BAHHP) and aromatic diacid chlorides. Effects of thermal cyclization on the permeation properties are also investigated. The polybenzoxazole from BAHHP and 4,4′-(1,1,1,3,3,3-hexafluoroisopropylidene)dibenzoyl chloride (HFDB) displays high performance for CO2/CH4 separation ( $ {\rm P}_{{\rm CO}_2 } $ = 6.1 × 10?9 cm3 (STP) cm?1 s?1 cm-Hg?1, and $ {{{\rm P}_{{\rm CO}_2 } } \mathord{\left/ {\vphantom {{{\rm P}_{{\rm CO}_2 } } {{\rm P}_{{\rm CH}_4 } }}} \right. \kern-\nulldelimiterspace} {{\rm P}_{{\rm CH}_4 } }} $ = 38 at 35°C). The polybenzoxazole from BAHHP and 2,6-naphthalene dicarbonyl chloride displays high performance for H2/CO or H2/CH4 separation ( $ {\rm P}_{{\rm H}_2 } $ = 2.4 × 10?9 cm3 (STP) cm?1 s?1 cm-Hg?1, $ {{{\rm P}_{{\rm H}_2 } } \mathord{\left/ {\vphantom {{{\rm P}_{{\rm H}_2 } } {{\rm P}_{{\rm CO}} }}} \right. \kern-\nulldelimiterspace} {{\rm P}_{{\rm CO}} }} $ = 71, and $ {{{\rm P}_{{\rm H}_2 } } \mathord{\left/ {\vphantom {{{\rm P}_{{\rm H}_2 } } {{\rm P}_{{\rm CH}_{\rm 4} } }}} \right. \kern-\nulldelimiterspace} {{\rm P}_{{\rm CH}_{\rm 4} } }} $ = 250). Permeation properties for the polybenzoxazole from BAHHP and HFDB are close to those for a polyimide of similar chemical structure. The permeation properties are discussed in connection with packing density and local segmental mobility. © 1992 John Wiley & Sons, Inc.  相似文献   

5.
Two aromatic polyimides and the corresponding poly(amic acid)s, with oxadiazole and para/meta phenoxyphenylene rings in the backbone, were synthesized and the structure — thermal properties correlation was followed by dynamic mechanical analysis. Concerning the poly(amic acid)s, the glass transition domain was emphasized only for the compound with meta-oriented rings because the process of imidization takes place with increasing temperature. A multiplex experiment was performed to calculate the activation energy of the transition localized under 200°C. Consecutive heating-cooling-heating cycles were accomplished. All phenomena are discussed by cross-examination of the storage modulus (E′), loss modulus (E″) and loss factor tanδ variation with temperature.  相似文献   

6.
The syntheses and properties of dendritic and hyperbranched aromatic polyamides and polyimides are reviewed. In addition to conventional stepwise reactions for dendrimer synthesis, an orthogonal/double‐stage convergent approach and dendrimer syntheses with unprotected building blocks are described as new synthetic strategies for dendritic polyamides. Hyperbranched polyamides and polyimides composed of various repeating units are presented. Besides the self‐polycondensation of AB2‐type monomers, new polymerization systems with AB4, AB8, A2 + B3, and A2 + BB′2 monomers have been developed for hyperbranched polyamides and polyimides. The copolymerization of AB2 and AB monomers is discussed separately with respect to the effects of branching units on the properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1293–1309, 2004  相似文献   

7.
Mean permeability coefficients for CO2, O2, N2, and CH4 in seven types of 6FDA polyimides with branched or extended diamine moieties were determined at 35.0°C (95.0°F) and at pressures up to 10.5 atm (155 psia). In addition, solubility coefficients for CO2, O2, N2, and CH4 in six of these polyimides were determined at 35.0°C and at 6.8 atm (100 psia). Mean diffusion coefficients for the six gas/polyimide systems were calculated from the permeability and solubility data. The relationships between the chemical structure of the polyimides, some of their physical properties (glass transition temperature, mean interchain spacing, specific free volume), and their gas permeability, diffusivity, and solubility behavior are discussed. The 6FDA polyimides studied here exhibit a considerably lower selectivity for the CO2/CH4 and O2/N2 gas pairs than 6FDA polyimides with short and stiff aromatic diamines with comparable CO2 and O2 permeabilities. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Permeability and solubility coefficients for H2, CO2, O2, CO, N2, and CH4 in polyimides prepared from 6FDA and methyl-substituted phenylenediamines were measured to investigate effects of the substituents on gas permeability and permselectivity. The methyl substituents restrict internal rotation around the bonds between the phenyl rings and the imide rings. The rigidity and nonplanar structure of the polymer chain, and the bulkiness of methyl groups make chain packing inefficient, resulting in increases in both diffusion and solubility coefficients of the gases. Polyimides from tetramethyl-p-phenylenediamine and trimethyl-m-phenylenediamine display very high permeability coefficients and very low permselectivity due to very high diffusion coefficients and very low diffusivity selectivity, as compared with the other polyimides having a similar fraction of free space. This suggests that these polyimides have high fractions of large-size free spaces.  相似文献   

9.
The phase behavior of binary blends of poly(ether ether ketone) (PEEK), sulfonated PEEK, and sulfamidated PEEK with aromatic polyimides is reported. PEEK was determined to be immiscible with a poly(amide imide) (TORLON 4000T). Blends of sulfonated and sulfamidated PEEK with this poly(amide imide), however, are reported here to be miscible in all proportions. Blends of sulfonated PEEK and a poly(ether imide) (ULTEM 1000) are also reported to be miscible. Spectroscopic investigations of the intermolecular interactions suggest that formation of electron donoracceptor complexes between the sulfonated/sulfamidated phenylene rings of the PEEKs and the n-phenylene units of the polyimides are responsible for this miscibility. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
A series of new soluble aromatic polyimides with inherent viscosities of 0.65–1.12 dL/g were synthesized from 1,3-bis(4-aminophenyl)-4,5-diphenylimidazolin-2-one and various aromatic tetracarboxylic dianhydrides by the conventional two-step procedure that included ring-opening polyaddition and subsequent thermal cyclodehydration. These polyimides could also be prepared by the one-pot procedure in homogeneous m-cresol solution. Most of the tetraphenyl-pendant polyimides were soluble in organic solvents such as N,N-dimethylacetamide, 1,3-dimethyl-2-imidazolidone, and m-cresol. Some polyimides gave transparent, flexible, and tough films with good tensile properties. The glass transition temperatures and 10% weight loss temperatures under nitrogen of the polyimides were in the range of 287–326 and 520–580°C, respectively. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1767–1772, 1998  相似文献   

11.
12.
Photosensitive polyimides with alicyclic diamines and benzophenone moiety were prepared by reactions of 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) with diamines in aprotic solvents, followed by thermal or chemical imidizations. Among them the polyimide from BTDA and bis(4-amino-3-methylcyclohexyl) methane (DMDHM) can be dissolved in several organic solvents such as dichloromethane, tetrachloroethane, and N-methyl-2-pyrrolidone (NMP). In order to compare properties of the polyimides with alicyclic diamines with those of corresponding aromatic polyimides, the UV absorption spectra and fluorescence spectra of these polyimides and their model compounds were investigated. No occurrence of charge transfer at photoexcited states was ascertained for the polyimides with alicyclic diamines. The hydrogen abstraction and crosslinking during photoirradiation have been studied to learn the influence of the elimination of charge transfer process in these photosensitive polyimides. The quantum yield of hydrogen abstraction for the model compound of alicyclic polyimides is 0.56 in THF measured with HPLC. The quantum yield for the photocrosslinking reaction of the solvent-soluble polyimide with alicyclic diamine, PI(BTDA/DMDHM), was determined to be 0.004 in air from gel permeation chromatography (GPC) measurement, which is four times higher than that for photosensitive polyimides with aromatic diamines. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
The synthesis, thermal, and gas transport properties of poly(hexafluoroisopropylidene isophthalamide), HFA/ISO homopolymer, and HFA/TERT‐co‐HFA/ISO copolyamides with different poly(hexafluoroisopropilydene‐5‐t‐butylisophthalamide), HFA/TERT, ratios are reported. The results indicate that the glass transition temperatures of the copolyamides increase as the concentration of HFA/TERT in the polyamide increases. The gas permeability coefficients in the polyamides and copolyamides are independent of pressure or decrease slightly particularly with CO2, N2, and CH4. It was seen that HFA/TERT is 2–6 times more permeable than HFA/ISO, depending on the gas being considered. This was assigned to the presence of the bulky lateral substituent, t‐butyl group in HFA/TERT and HFA/TERT‐co‐HFA/ISO copolyamides. This substituent increases fractional free‐volume, as expected. Therefore, the gas permeability and diffusion coefficients generally increase with increasing fractional free‐volume. The experimental results for the gas permeability and permselectivity for the copolyamides was well represented by a logarithmic mixing rule of the homopolyamides permeability coefficients and their volume fraction. The selectivity of gas pairs, such as O2/N2, CO2/CH4, and N2/CH4 decreased slightly with the addition of HFA/TERT. The temperature dependence of permeability for homopolyamides and copolyamides can be described by an Arrhenius type equation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2625–2638, 2005  相似文献   

14.
New aromatic polyamide and polyimides were prepared from di(aminophenyl)acetylenediurea. In addition, model compounds were synthesized and their IR spectra were in agreement with those of the corresponding polymers. The polymers were amorphous and readily soluble in polar aprotic solvents (DMF, NMP, DMSO) and certain acids (H2SO4, CCl3COOH). The hydrophilicity of polyamide was estimated by measuring the isothermal water absorption. The polyamide softened at 260°C but no softening was observed for polyimides. The glass transition temperatures of polymers were determined by the TMA method and they were in the range of 235–310°C. The polymers were stable up to 359–404°C in N2 or air and afforded char yields of 53–65% at 800°C in N2. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Three new diamines 1,2-di(p-aminophenyloxy)ethylene, 2-(4-aminophenoxy)methyl-5-aminobenzimidazole and 4,4-(aminopheyloxy) phenyl-4-aminobenzamide were synthesized and polymerized with 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BP), 4,4′-(hexafluoroisopropyledene)diphthalic anhydride (HF) and 3,4,9,10-perylene tetracarboxylic acid dianhydride (PD) either by one step solution polymerization reaction or by two step procedure. The later includes ring opening poly-addition to give poly(amic acid), followed by cyclodehydration to polyimides with the inherent viscosities 0.62-0.97 dl/g. Majority of polymers are found to be soluble in most of the organic solvents such as DMSO, DMF, DMAc, m-cresol even at room temperature and few becomes soluble on heating. The degradation temperature of the resultant polymers falls in the ranges from 240 °C to 550 °C in nitrogen (with only 10% weight loss). Specific heat capacity at 300 °C ranges from 1.1899 to 5.2541 J g−1 k−1. The maximum degradation temperature ranges from 250 to 620 °C. Tg values of the polyimides ranged from 168 to 254 °C.  相似文献   

16.
The ortho‐positronium (o‐Ps) lifetime τ3 and its intensity I3 in various fluorinated polyimides were determined by the positron annihilation technique and were studied with the spin–lattice relaxation time T1 and the propylene permeability, solubility, diffusivity, and permselectivity for propylene/propane in them. τ3, I3, and the distribution of τ3 changed when the bulky moieties in the polyimides were changed. The polyimides, having both large τ3 and I3 values, exhibited a short T1 and a high permeability with a low permselectivity. The propylene permeability and diffusivity were exponentially correlated with the product of I3 and the average free‐volume hole size estimated from τ3. In highly plasticized states induced by the sorption of propylene, the permeability increased with the propylene pressure in excellent agreement with the change in the free‐volume hole properties probed by o‐Ps. The large and broad distribution of the free‐volume holes and increased local chain mobility for the 2,2‐bis(3,4‐decarboxyphenyl) hexafluoropropane dianhydride‐based polyimides are thought to be important physical properties for promoting penetrant‐induced plasticization. These results suggest that o‐Ps is a powerful probe of not only the free‐volume holes but also the corresponding permeation mechanism and penetrant‐induced plasticization phenomenon. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 308–318, 2003  相似文献   

17.
A series of hyperbranched polyimides (HBPIs) were synthesized by reacting a triamine monomer N ,N ′,N ″‐tris(4‐methoxyphenyl)‐N ,N ′,N ″‐tris(4‐phenylamino)?1,3,5‐benzenetriamine with various dianhydrides such as oxydiphthalic dianhydride (ODPA), 3,3′,4,4′‐diphenylsulfonetetracarboxylic dianhydride (DSDA), 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA), and pyromellitic dianhydride (PMDA). The hyperbranched polyimide (6FHBPI) using 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) as dianhydride monomer was also added into the discussion. All the hyperbranched polyimides exhibited excellent organo‐solubility and high thermal stability. Memory devices with a sandwiched structure of indium tin oxide (ITO)/HBPI/Al were constructed by using these HBPIs as the active layers. All these HBPIs based memory devices exhibited favorable memory performances, with switching voltages between ?1.3 V and ?2.5 V, ON/OFF current ratios up to 107 and retention times long to 104 s. Tunable memory characteristics from electrical insulator to volatile memory, and then to nonvolatile memory were obtained by adjusting the electron acceptors of these HBPIs. Molecular simulation results suggested that the electron affinity and the dipole moment of these HBPIs were responsible for the conversion of the memory characteristics. With the electron affinity and dipole moment of these HBPIs increasing, the memory characteristics turned from volatile to nonvolatile. The present study suggested that tunable memory performance could be achieved through adjusting the acceptor moieties of the hyperbranched polyimides. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2281–2288  相似文献   

18.
New aromatic polyimides containing triphenylamine unit were prepared by two different methods, i.e., a conventional two-step method starting from 4,4′-diaminotriphenylamine and aromatic tetracarboxylic dianhydrides and the one-step thioanhydride method starting from the aromatic diamine and aromatic tetracarboxylic dithioanhydrides. Both procedures yielded high-molecular-weight polyimides with inherent viscosities of 0.47–1.17 dL/g. Some of these polymers were soluble in organic solvents such as N,N-dimethylacetamide, N-methyl-2-pyrrolidone, m-cresol, and pyridine. All the polyimides afforded transparent, flexible, and tough films, and the color varied from pale yellow to dark red, depending markedly on the tetracarboxylic acid components. The glass transition temperatures (Tgs) of these polyimides were in the range of 287–331°C and the 10% weight loss temperatures were above 520°C in air. The polyimides prepared by the one-step method exhibited better solubility in organic solvents and had somewhat lower Tgs than the polymers prepared by a conventional two-step method.  相似文献   

19.
We investigated relations between diffusivities on polyimides and physical parameters with mobilities of segments and examined viscoelasticity of polyimides on introducing the parameter as an index of mobilities of polymer chains.  相似文献   

20.
The synthesis, thermal, and gas transport properties of poly(benzophenone isophthalamide), DBF/ISO, poly(benzophenone‐5‐tert‐butylisophthalamide), DBF/TERT, homopolymers, and their copolyamides with different DBF/TERT ratios are reported. The results indicate that the glass transition temperatures of the copolyamides increase as the concentration of DBF/TERT in the polyamide increases. The gas permeability coefficients for DBF/ISO are around 10?2 Barrers for O2 which situates this polymer as a barrier polymer. It was also found that permeability coefficients in all polyamides and copolyamides are independent of pressure for He or decrease slightly particularly with O2, CO2, and N2. It was seen that DBF/TERT is up to 15 times more permeable than DBF/ISO, depending on the gas being considered. This behavior was assigned to the presence of the bulky lateral substituent, the tert‐butyl group, in DBF/TERT and DBF/TERT‐co‐DBF/ISO copolyamides. This bulky substituent increases fractional free volume and interchain spacing; as a consequence, the gas permeability and diffusion coefficients generally increase. The experimental results for the gas permeability coefficients and permselectivity for the copolyamides was well represented by a semilogarithmic mixing rule of the homopolyamides permeability coefficients as a function of their volume fraction. The selectivity of gas pairs, such as He/O2 and He/CO2, decreased slightly with the addition of DBF/TERT. The temperature dependence of permeability for homopolyamides and copolyamides can be described by an Arrhenius type equation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2083–2096, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号