首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The gas phase reaction kinetics of OH with three di‐amine rocket fuels—N2H4, CH3NHNH2, and (CH3)2NNH2—was studied in a discharge flow tube apparatus and a pulsed photolysis reactor under pseudo‐first‐order conditions in [OH]. Direct laser‐induced fluorescence monitoring of the [OH] temporal profiles in a known excess of the [diamine] yielded the following absolute second‐order OH rate coefficient expressions; k1 = (2.17 ± 0.39) × 10?11 e(160±30)/T, k2 = (4.59 ± 0.83) × 10?11 e(85±35)/T and k3 = (3.35 ± 0.60) × 10?11 e(175±25)/T cm3 molec?1 s?1, respectively, for reactions with N2H4, CH3NHNH2 and (CH3)2NNH2 in the temperature range 232–637 K. All three reactions did not show any discernable pressure dependence on He or N2 buffer gas pressure of up to 530 torr. The magnitude of the weak temperature and the lack of pressure effects of the OH + N2H4 reaction rate coefficient suggest that a simple direct metathesis of H‐atom may not be important compared to addition of the OH to one of the N‐centers of the diamine skeleton, followed by rapid dissociation of the intermediate into products. Our findings on this reaction are qualitatively consistent with a previous ab initio study [ 3 ]. However, in the alkylated diamines, direct H‐abstraction from the methyl moiety cannot be completely ruled out. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 354–362, 2001  相似文献   

2.
Direct kinetic measurements have been made on the reaction: 2NO2 = N2O4. Equilibrium mixtures of NO2 and N2O4 at (224 ± 2) K were perturbed by flash photolysis of a fraction of the N2O4. The rate of relaxation back to equilibrium was monitored by observing the transmittance of the 14P(11) line from a cw CO laser selected to coincide with the v9 band of N2O4. Measurements were made in the presence of 350–750 torr of He, N2, or CF4. Within this limited pressure range, the kinetics were consistent with third-order behavior with the following rate constants (cm3 molecule?1 s?1): k0 = (2.4 ± 0.5) × 10?34 [He]; (1.0 ± 0.1) × 10?33 [N2]; (1.8 ± 0.3) × 10?33 [CF4].  相似文献   

3.
Time-resolved resonance fluorescence detection of atomic chlorine following 266-nm laser flash photolysis of Cl2CO/RSR'/N2 mixtures has been employed to study the kinetics of Cl reactions with H2S(k1), CH3SH(k2), D2S(k3), and CD3SD(k4) as a function of temperature (193–431 K) and pressure (25–600 torr). Arrhenius expressions which describe our results are (units are 10?11 cm3molecule?1s?1; uncertainties are 2σ, precision only) k1 = (3.69 ± 0.33) exp[(208 ± 24)/T], k2 = (11.9 ± 1.7) exp[(151 ± 38)/T], and k3 = (1.93 ± 0.32) exp[(168 ± 42)/T]. The Cl + CD3SD reaction has been studied at 299 K and 396 K; values for k4 at these two temperatures are essentially the same as those measured for k2. Our results are compared with earlier studies and the mechanistic implications of observed negative activation energies and H? D kinetic isotope effects are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Absolute rate constants for H-atom abstraction by OH radicals from cyclopropane, cyclopentane, and cycloheptane have been determined in the gas phase at 298 K. Hydroxyl radicals were generated by flash photolysis of H2O vapor in the vacuum UV, and monitored by time-resolved resonance absorption at 308.2 nm [OH(A2Σ+X2Π)]. The rate constants in units of cm3 mol−1 s−1 at the 95% confidence limits were as follows: k(c C3H6) = (3.74 ± 0.83) × 1010, k(c C5H10) = (3.12 ± 0.23) × 1012, k(c C7H14) = (7.88 ± 1.38) × 1012. A linear correlation was found to exist between the logarithm of the rate constant per C H bond and the corresponding bond dissociation energy for several classes of organic compounds with equivalent C H bonds. The correlation favors a value of D(c C3H5–H) = (101 ± 2) kcal mol−1.  相似文献   

5.
The rate constant for the reaction Cl + CHClO → HCl + CClO was determined from relative decay rates of CHClO and CH3Cl inthe photolysis of mixtures containing Cl2 (~1 torr), CH3Cl (~1 torr), and O2 (~0.1 torr) in 700 torr N2. In such mixtures CHClO was generated in situ as a principal product prior to complete consumption of O2. The value of k(Cl + CHClO)/k(Cl + CH3Cl) = 1.6 ± 0.2(3σ) combined with the literature value of k(Cl + CH3Cl) = 4.9 × 10?13 cm3/molecule sec gives k(Cl + CHClO) = 7.8 × 10?13 cm3/molecule sec at 298 ± 2 K, in excellent agreement with a previous value of (7.9 ± 1.5) × 10?13 cm3/molecule sec determined by Sanhueza and Heicklen [J. Phys. Chem., 79 , 7 (1975)]. Thus this reaction is approximately 100 times slower than the corresponding reactions of aldehydes and alkanes with comparable C? H bond energies (≤95 kcal/mol).  相似文献   

6.
Relative rate measurements of the reactions of the HO-radical with CO [HO + CO → H + CO2 (1)] and with isobutane [HO + iso-C4H10 → H2O + t-(or iso-)C4H9 (3)] have been made through the photolysis of dilute mixtures of HONO with CO, iso-C4H10, NO2, and NO in simulated air at 700 and 100 torr pressure and 25 ± 2°C. In situ, long path, FT-IR analysis of the reactants and products provided essentially continuous monitoring of the reactions during the course of the experiments. The kinetic analysis of the data coupled with Greiner's estimate of k3 give new estimates of k1 = 439 ± 24 ppm?1 min?1 in air at 700 torr and k1 = 203 ± 29 ppm?1 in air at 100 torr. The results confirm the recent conclusions of Cox and Sie and their co-workers that the rate constant for reaction (1) is pressure dependent. Modeliers of the chemical changes which occur in the troposphere should adopt a new value for the rate constant k1 which is about a factor of two larger than that in current use by most groups.  相似文献   

7.
Fourier transform infrared spectroscopy was used to identify and quantify products of the self reaction of ethylperoxy radicals, C2H5O2, formed in the photolysis of Cl2/C2H6 mixtures in 700 torr total pressure of synthetic air at 295 K. From these measurements, branching ratios for the reaction channels (1) of k1a/(k1a + k1b) = 0.68 and k1c/(k1a + k1b + k1c) ? 0.06 were established. Additionally, using the relative rate technique, the rate constant for the reaction of Cl atoms with C2H5OOH was determined to be (1.07 ± 0.07) × 10?10 × cm3 molecule?1 s?1. Results are discussed with respect to the previous kinetic and mechanistic studies of C2H5O2 radicals.  相似文献   

8.
A kinetic study of the reactions of H atoms with CH3SH and C2H5SH has been carried out at 298 K by the discharge flow technique with EPR and mass spectrometric analysis of the species. The pressure was 1 torr. It was found: k1 = (2.20 ± 0.20) × 10?12 for the reaction H + CH3SH (1) and k2 = (2.40 ± 0.16) × 10?12 for the reaction H + C2H5SH (2). Units are cm3 molecule?1 s?1. A mass spectrometric analysis of the reaction products and a computer simulation of the reacting systems have shown that reaction (1) proceeds through two mechanisms leading to the formation of CH3S + H2 (1a) and CH3 + H2S (1b).  相似文献   

9.
A detailed investigation of the photolysis of t-C4HgSH has been carried out in the absence and presence of the inert gas, C2H6. A mechanssm consisting of three primaRy photochemical steps: t-C4H9SH → t-C4H9S + H (1), t-C4H9SH → t-C4H9 + SH (2), t-C4H9SH → i-C4H8 + H2S (3), six hot and seven thermal reaction steps, adequately explains all the experimental observations. As in the case of hot H* atoms, both the H-atom abstraction H + t-C4H9SH → H2 + t-C4H9S (7), and the SH-displacement reactions, H + t-C4H9SH → H2S + i-C4H8 (8) occur with thermalized H-atoms. The Arrhenius expression of the rate constant ratio, k7/k8 for the latter reactions has been determined over the temperature range 25-14° C to be: ln(k7/k8) = (0.3 ± 0.1) + (420 ± 80)/RT.  相似文献   

10.
The kinetics of C2H5O2 and C2H5O2 radicals with NO have been studied at 298 K using the discharge flow technique coupled to laser induced fluorescence (LIF) and mass spectrometry analysis. The temporal profiles of C2H5O were monitored by LIF. The rate constant for C2H5O + NO → Products (2), measured in the presence of helium, has been found to be pressure dependent: k2 = (1.25±0.04) × 10?11, (1.66±0.06) × 10?11, (1.81±0.06) × 10?11 at P (He) = 0.55, 1 and 2 torr, respectively (units are cm3 molecule?1 s?1). The Lindemann-Hinshelwood analysis of these rate constant data and previous high pressure measurements indicates competition between association and disproportionation channels: C2H5O + NO + M → C2H5ONO + M (2a), C2H5O + NO → CH3CHO + HNO (2b). The following calculated average values were obtained for the low and high pressure limits of k2a and for k2b : k = (2.6±1.0) × 10?28 cm6 molecule?2 s?1, k = (3.1±0.8) × 10?11 cm3 molecule?1 s?1 and k2b ca. 8 × 10?12 cm3 molecule?1 s?1. The present value of k, obtained with He as the third body, is significantly lower than the value (2.0±1.0) × 10?27 cm6 molecule?2 s?1 recommended in air. The rate constant for the reaction C2H5O2 + NO → C2H5O + NO2 (3) has been measured at 1 torr of He from the simulation of experimental C2H5O profiles. The value obtained for k3 = (8.2±1.6) × 10?12 cm3 molecule?1 s?1 is in good agreement with previous studies using complementary methods. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
The forward rate constant, k1, and the equilibrium constant, Kp, for the association reaction of the benzyl radical with oxygen have been determined. The rate constant k1 was measured as a function of temperature (between 298 and 398 K) and pressure (at 20 and 760 torr of N2) by two different techniques, argon-lamp flash photolysis and excimer-laser flash photolysis, both of which employed UV absorption spectroscopy (at 253 nm and 305 nm, respectively) to monitor the benzyl radical concentration. Over the range of conditions studied, we find that the reaction is independent of pressure and is almost independent of temperature, which is in accord with two early studies of the reaction but in apparent disagreement with more recent work. For our results in 760 torr of N2 and for 298 < T/K < 398, a linear least-squares fitting of the data yield the expression: k1 = (7.6 ± 2.4) × 10?13 exp[(190 ± 160) K / T ] cm3 molecule?1 s?1. With the flash-photolysis technique, we determined Kp over the temperature range 398–525 K. Experimental values were analyzed alone and combined with theoretically determined entropy values of the benzyl and benzylperoxy radicals to determine the enthalpy of reaction: ΔH = (?91.4 ± 4) kJ mol?1. Previous work on the benzyl radical enthalpy of formation allows us to calculate ΔH°f 298 (Benzylperoxy) = (117 ± 6) kJ mol?1. In addition, we carried out an RRKM calculation of k1 using as constraints the thermodynamic information gained by the study of Kp. We find that all the studies of the association reaction are in good agreement once a fall-off effect is taken into account for the most recent work conducted at pressures near 1 torr of helium. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
The room-temperature photolysis of N2O (10–100 torr) at 2139 Å to produce O(1D) has been studied in the presence of CH4 (10–891 torr). The reactions of O(1D) with CH4 were found to be The method of chemical difference was used to measure the rate constant ratio k4/(k2 + k3), where reactions (2) and (3) are The CH3 radicals produced in reaction (4) react with the O2 and NO produced in reactions (2) and (3). Thus, near the endpoint of the internal titration, ?{C2H6} gives an accurate measure of k4/(k2 + k3). For the translationally energetic O(1D) atoms produced in the photolysis, k4/(k2 + k3) = 2.28 ± 0.20. However, if He is added to remove the excess translational energy, then k4/(k2 + k3) drops to 1.35 ± 0.3.  相似文献   

13.
Atomic absorption and fluorescence spectrophotometry have been routinely used in kinetic investigations as probes of relative, rather than absolute, atom concentration. The calibration of a Lyman-α photometer for measurement of absolute hydrogen atom concentrations at levels [H] ι ≤ 1.8 × 1014 atoms/cm2 and total pressure of 1.5 torr He is described. The photometer is characterized in terms of a two-level emission source and an absorption region in which only Doppler broadening of the transition is considered. The modifications due to pressure broadening by high pressures (500 ≤ P ≤ 1500 torr) in the absorption region are discussed in detail. Application of the technique is reported for the recombination of hydrogen atoms in the presence of six nonreactive heat bath gases. Experiments were performed in a static reaction cell at pressures of 500–1500 torr of heat bath gas, and hydrogen atoms were produced by Hg (3P1) photosensitization of H2. The technique is critically evaluated and the mechanistic implications of the hydrogen atom recombination results are examined. The measured room temperature recombination rate constants in H2, He, Ne, Ar, Kr, and N2 are 8.5 ± 1.2, 6.9 ± 1.5, 5.9 ± 1.5, 8.0 ± 0.8, 10.2 ± 0.9, and 9.6 ± 1.4, respectively, where the units are 1033 cm6/molec2 · sec.  相似文献   

14.
A flash photolysis–resonance fluorescence technique was used to investigate the kinetics of the OH(X2Π) radical and O(3P) atom‐initiated reactions with CHI3 and the kinetics of the O(3P) atom‐initiated reaction with C2H5I. The reactions of the O(3P) atom with CHI3 and C2H5I were studied over the temperature range of 296 to 373 K in 14 Torr of helium, and the reaction of the OH (X2Π) radical with CHI3 was studied at T = 298 K in 186 Torr of helium. The experiments involved time‐resolved resonance fluorescence detection of OH (A2Σ+ → X2Π transition at λ = 308 nm) and of O(3P) (λ = 130.2, 130.5, and 130.6 nm) following flash photolysis of the H2O/He, H2O/CHI3/He, O3/He, and O3/C2H5I/He mixtures. A xenon vacuum UV (VUV) flash lamp (λ > 120 nm) served as a photolysis light source. The OH radicals were produced by the VUV flash photolysis of water, and the O(3P) atoms were produced by the VUV flash photolysis of ozone. Decays of OH radicals and O(3P) atoms in the presence of CHI3 and C2H5I were observed to be exponential, and the decay rates were found to be linearly dependent on the CHI3 and C2H5I concentrations. Measured rate coefficients for the reaction of O(3P) atoms with CHI3 and C2H5I are described by the following Arrhenius expressions (units are cm3 s?1): kO+C2H5I(T) = (17.2 ± 7.4) × 10?12 exp[?(190 ± 140)K/T] and kO+CHI3(T) = (1.80 ± 2.70) × 10?12 exp[?(440 ± 500)K/T]; the 298 K rate coefficient for the reaction of the OH radical with CHI3 is kOH+CHI3(298 K) = (1.65 ± 0.06) × 10?11 cm3 s?1. The listed uncertainty values of the Arrhenius parameters are 2σ‐standard errors of the calculated slopes by linear regression.  相似文献   

15.
The third order rate coefficients for the addition reaction of Cl with NO2, Cl + NO2 + M → ClNO2 (ClONO) + M; k1, were measured to be k1(He) = (7.5 ± 1.1) × 10?31 cm6 molecule?2 s?1 and k1(N2) = (16.6 ± 3.0) × 10?31 cm6 molecule?2 s?1 at 298 K using the flash photolysis-resonance fluorescence method. The pressure range of the study was 15 to 500 torr He and 19 to 200 torr N2. The temperature dependence of the third order rate coefficients were also measured between 240 and 350 K. The 298 K results are compared with those from previous low pressure studies.  相似文献   

16.
The rate constants, k1, of the reaction of CF3OC(O)H with OH radicals were measured by using a Fourier transform infrared spectroscopic technique in an 11.5‐dm3 reaction chamber at 242–328 K. OH radicals were produced by UV photolysis of an O3–H2O–He mixture at an initial pressure of 200 Torr. Ozone was continuously introduced into the reaction chamber during UV irradiation. With CF3OCH3 as a reference compound, k1 at 298 K was (1.65 ± 0.13) × 10?14 cm3 molecule?1 s?1. The temperature dependence of k1 was determined as (2.33 ± 0.42) × 10?12 exp[?(1480 ± 60)/T] cm3 molecule?1 s?1; possible systematic uncertainty could add an additional 20% to the k1 values. The atmospheric lifetime of CF3OC(O)H with respect to reaction with OH radicals was calculated to be 3.6 years. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 337–344 2004  相似文献   

17.
Using Fourier transform infrared spectroscopy, the ethene yield from the reaction of C2H5 radicals with O2 has been determined to be 1.50 ± 0.09%, 0.85 ± 0.11%, and <0.1% at total pressures of 25, 50, and 700 torr, respectively. Additionally, the rate constant of the reaction of C2H5 radicals with molecular chlorine was measured relative to that with molecular oxygen. (1) A ratio k6/k7 = 1.99 ± 0.14 was measured at 700 torr total pressure which, together with the literature value of k7 = 4.4 × 10?12 cm3 molecule?1s?1, yields k6 = (8.8 ± 0.6) × 10?12 cm3 molecule?1s?1. Quoted errors represent 2σ. These results are discussed with respect to previous kinetic and mechanistic studies of C2H5 radicals.  相似文献   

18.
Flash photolysis of CH3CHO and H2CO in the presence of NO has been investigated by the intracavity laser spectroscopy technique. The decay of HNO formed by the reaction HCO + NO → HNO + CO was studied at NO pressures of 6.8–380 torr. At low NO pressure HNO was found to decay by the reaction HNO + HNO → N2O + H2O. The rate constant of this reaction was determined to be k1 = (1.5 ± 0.8) × 10?15 cm3/s. At high NO pressure the reaction HNO + NO → products was more important, and its rate constant was measured to be k2 = (5 ± 1.5) × 10?19 cm3/s. NO2 was detected as one of the products of this reaction. Alternative mechanisms for this reaction are discussed.  相似文献   

19.
Reactions of Cu2 with several small molecules have been studied in the gas phase, under thermalized conditions at room temperature, in a fast-flow reactor. They fall into one of two categories. Cu2 does not react with O2, N2O, N2, H2, and CH4 at pressures up to 6 torr. This implies bimolecular rate constants of less than 5 × 10?15 cm3 s?1 at 6 torr He. Cu2 reacts with CO, NH3, C2H4, and C3H6 in a manner characteristic of association reactions. Second-order rate constants for all four of these reagents are dependent on total pressure. The reactions with CO, NH3, and C2H4 are in their low pressure limit at up to 6 torr He buffer gas pressure. The reaction with C3H6 begins to show fall-off behavior at pressures above 3 torr. Limiting low-pressure, third-order rate constants are 0.66 ± 0.10, 8.8 ± 1.2, 9.3 ± 1.4, and 85 ± 15 × 10?30 cm6 s?1 in He for CO, NH3, C2H4, and C3H6, respectively. Modeling studies of these rate constants imply that the association complexes are bound by at least 20 kcal mol?1 in the case of C2H4 and C3H6 and at least 25 kcal mol?1 in the other cases. The implications of these results for Cu-ligand bonding are developed in comparison with existing work on the interactions of these ligands with Cu atoms, larger clusters, and surfaces. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
The kinetics of the reaction NH2 + NO → N2 + H2O were studied, using a conventional flash photolysis system. A value of k1 = (1.1 ± 0.2) × 1010 & mole?1 s?1 was obtained at room temperature and in the pressure range 2–700 torr in the presence of nitrogen. A slight negative temperature coefficient was observed between 300 and 500 K, equivalent to a negative activation energy of 1.05 ± 0.2 kcal mole?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号