首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imine complexes [IrCl(η5‐C5Me5){κ1‐NH=C(H)Ar}{P(OR)3}]BPh4 ( 1 , 2 ) (Ar = C6H5, 4‐CH3C6H4; R = Me, Et) were prepared by allowing chloro complexes [IrCl25‐C5Me5){P(OR)3}] to react with benzyl azides ArCH2N3. Bis(imine) complexes [Ir(η5‐C5Me5){κ1‐NH=C(H)Ar}2{P(OR)3}](BPh4)2 ( 3 , 4 ) were also prepared by reacting [IrCl25‐C5Me5){P(OR)3}] first with AgOTf and then with benzyl azide. Depending on the experimental conditions, treatment of the dinuclear complex [IrCl25‐C5Me5)]2 with benzyl azide yielded mono‐ [IrCl25‐C5Me5){κ1‐NH=C(H)Ar}] ( 5 ) and bis‐[IrCl(η5‐C5Me5){κ1‐NH=C(H)Ar}2]BPh4 ( 6 ) imine derivatives. In contrast, treatment of chloro complexes [IrCl25‐C5Me5){P(OR)3}] with phenyl azide C6H5N3 gave amine derivatives [IrCl(η5‐C5Me5)(C6H5NH2){P(OR)3}]BPh4 ( 7 , 8 ). The complexes were characterized spectroscopically (IR, NMR) and by X‐ray crystal structure determination of [IrCl(η5‐C5Me5){κ1‐NH=C(H)C6H4‐4‐CH3}{P(OEt)3}]BPh4 ( 2b ).  相似文献   

2.
Organometallic Compounds of the Lanthanides. 113. [(tert-Butylcyclopentadienyl)(cyclopentadienyl)dimethylsilane] Complexes of selected Lanthanides The reaction of [Me2Si(C5H4)(tBuC5H3)]Li2 with LnCl3 (Ln = Y, Nd, Sm, Lu) in THF results in the formation of the chiral, dimeric complexes [Me2Si(C5H4)(tBuC5H3)]Ln(μ-Cl)2Li(THF)(Et2O) [Ln = Y ( 1 ), Nd ( 2 ), Sm ( 3 ), Lu ( 4 )]. The 1H-, 13C-NMR- and the mass spectra of the new compounds as well as the X-ray crystal structures of 2 a and 3 a were discussed.  相似文献   

3.
Synthesis and Characterization of Aquapentachloroplatinates(IV) – Structure of [K(18-crown-6)][PtCl5(H2O)] The crown ether complex of the aquapentachloroplatinic acid of the composition [H13O6][PtCl5(H4O2)] · 2(18-cr-6) ( 2 ) reacts with K2CO3 and [NnBu4]OH in aqueous solution to give [K(18-cr-6)][PtCl5(H2O)] ( 5 a ) and [NnBu4][PtCl5(H2O)] · 1/2 (18-cr-6) · H2O ( 5 b ), respectively. Both compounds were characterized by microanalysis, vibrational (IR, Raman) and NMR (1H, 13C, 195Pt) spectroscopy. The X-ray structure analysis of 5 a (orthorhombic, pnma; a = 16,550(4), b = 18,044(3), c = 7,415(1) Å; Z = 4; R1 = 0,0183; wR2 = 0,0414) reveals that the crystal is threaded by chains built up of [PtCl5(H2O)]? and [K(18-cr-6)]+ units. There are tight K …? Cl contacts (d(K? Cl1)) = 3,0881(9) Å and OW? H? Ocr hydrogen bridges (d(O1 …? O2) = 2,806(3) Å) between these units. The coordination polyhedron [PtCl5O] has approximately C4v symmetry.  相似文献   

4.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

5.
Structure and Constitution of Dichloro(tetraalkylcyclobutadiene)platinum(II) Complexes Hexachloroplatinic acid reacts in n-butanol with alkylsubstituted acetylenes RC≡CR (R = Me, Et) to give [PtCl2(C4R4)] (R = Me ( 1 ), R = Et ( 2 )). The X-ray structure analysis of 1 (C2/m; a = 1 370.3(2), b = 1 128.3(1), c = 691.21(7) pm, β = 96.10(1)α; Z = 4) shows that 1 is monomeric and not dimeric as was described in the literature. Furthermore, 1 and 2 were extensively studied by i.r., Raman, and n.m.r. spectroscopical investigations.  相似文献   

6.
Syntheses and Characterization of Trimethyl(sufato)platinum(IV) Complexes [(PtMe3I)4] ( 1 ) reacts in benzene/acetone (1 : 1) with excess of freshly precipitated silver sulfate (Pt : Ag = 1 : 2) to give [{[PtMe3(H2O)]2SO4}] ( 2 ) at working up from acetone (not dried) and water to [{PtMe3(H2O)2}2SO4] ( 3 ), respectively. [(PtMe3I)4] ( 1 ) reacts with AgBF4 in the corresponding solvent L to give complexes of the type [PtMe3L3]BF4 (L = Me2CO 4 , MeOH 5 , MeCN 6 , THF 7 ). The triaqua complex 8 (L = H2O) has been obtained by reaction of 4 with water. All complexes are characterized by microanalysis and NMR spectroscopy (1H, 13C, 195Pt). X-ray diffraction analysis of 2 (monoclinic, P21) exhibits dinuclear units [Me3Pt(μ-H2O)PtMe3(H2O)]2+ at which oxo ligands of sulfate ions are coordinated in such a way that the crystal is threaded by double chains. The Pt–O bonds to μ-aqua ligand are considerably longer than that to terminal aqua ligand (2.322(9)/2.363(8) vs. 2.234(9) Å). The structural characterization of 3 (triclinic, P 1) reveals [PtMe3(H2O)2]+ cations that are bridged by a sulfate ion yielding a dinuclear entity [(H2O)2Me3Pt(μ-SO4)PtMe3 · (H2O)2]. These entities are linked in the crystal by a network of hydrogen bridges.  相似文献   

7.
Metal Complexes of Biologically Important Ligands. CXXVI. Palladium(II) and Platinum(II) Complexes with the Antimalarial Drug Mefloquine as Ligand The coordination sites of the antimalarial drug mefloquine (L) were studied. Reactions of the chloro bridged complexes (allyl)Pd(μ‐Cl)2Pd(allyl) and (R3P)(Cl)M(μ‐Cl)2M(Cl)(PR3) (M = Pd, Pt) with racemic mefloquine give the compounds (allyl)(Cl)Pd(L) ( 1 ), Cl2(Et3P)Pt(L) ( 2 ) and Cl2(Et3P)Pd(L) ( 3 ) with coordination of the piperidine N atom of mefloquine. In the presence of NaOMe the N,O‐chelate complexes Cl(Et3P)Pt(L–H+) ( 4 ) and Cl(R3P)Pd(L–H+) ( 5 , 6 , R = Et, nBu) were obtained. Protection of the piperidine N atom of mefloquine by protonation allows the synthesis of the complexes Cl2(Et3P)Pt(L + H+) ( 7 ) in which mefloquine is coordinated via the quinoline N atom. The structures of 2 , 3 and 4 were determined by X‐ray diffraction analysis. In the crystal of 4 pairs of enantiomers are found which are linked by two hydrogen bridges between the amine group and the chloro ligand.  相似文献   

8.
N,N -Dimethylglycinato Complexes of Platinum(IV) The aquapentachloroplatinic acid (H3O)-[PtCl5(H2O)] · 2(18-cr-6) · 6 H2O ( 1 ) reacts with N,N-dimethylglycine (Me2glyH) to give cis-[PtCl2(N,O-Me2gly)2] · (18-cr-6) ( 6 ) and (Me2glyH2)[PtCl4(N,O-Me2gly)] ( 7 ). Complexes 6 and 7 are characterized by microanalysis, 1H-NMR and IR spectroscopy as well as by X-ray structure analysis. In both complexes the N,N-dimethylglycinato ligands are N,O-coordinated. In 6 , the amino groups are mutually trans and the carboxylato groups are cis (configuration index: OC-6–22). In the crystal, there are only weak C–H…O interactions between the N-methyl groups of the [PtCl2(N,O-Me2gly)2] complex and the oxygen atoms of the crown ether (shortest C…O contacts: 3.10(2) Å and 3.21(2) Å). In the solid state, 7 exhibits strong cation-anion interactions: The carboxyl group of the cation (Me2glyH2)+ forms a strong O–H…O bridge to the exocyclic oxygen atom of the carboxylate group of the glycinato ligand (O…O 2.61(1) Å).  相似文献   

9.
Zeise's salt, [PtCl3(H2C=CH2)], is the oldest known organometallic complex, featuring ethylene strongly bound to a platinum salt. Many derivatives are known, but none involving dinitrogen, and indeed dinitrogen complexes are unknown for both platinum and palladium. Electrospray ionization mass spectrometry of K2[PtCl4] solutions generate strong ions corresponding to [PtCl3(N2)], the identity of which was confirmed through ion-mobility spectrometry and MS/MS experiments that proved it to be distinct from its isobaric counterparts [PtCl3(C2H4)] and [PtCl3(CO)]. Computational analysis established a gas-phase platinum–dinitrogen bond strength of 116 kJ mol−1, substantially weaker than the ethylene and carbon monoxide analogues but stronger than for polar solvents such as water, methanol and dimethylformamide, and strong enough that the calculated N−N bond length of 1.119 Å represents weakening to a degree typical of isolated dinitrogen complexes.  相似文献   

10.
A dinuclear tantalum complex, [Ta2Cl6(μ‐C4Et4)] ( 2 ), bearing a tantallacyclopentadiene moiety, was synthesized by treating [(η2‐EtC?CEt)TaCl3(DME)] ( 1 ) with AlCl3. Complex 2 and its Lewis base adducts, [Ta2Cl6(μ‐C4Et4)L] (L=THF ( 3 a ), pyridine ( 3 b ), THT ( 3 c )), served as more active catalysts for cyclotrimerization of internal alkynes than 1 . During the reaction of 3 a with 3‐hexyne, we isolated [Ta2Cl4(μ‐η44‐C6Et6)(μ‐η22‐EtC?CEt)] ( 4 ), sandwiched by a two‐electron reduced μ‐η44‐hexaethylbenzene and a μ‐η22‐3‐hexyne ligand, as a product of an intermolecular cyclization between the metallacyclopentadiene moiety and 3‐hexyne. The formation of arene complexes [Ta2Cl4(μ‐η44‐C6Et4Me2)(μ‐η22‐Me3SiC?CSiMe3)] ( 7 b ) and [Ta2Cl4(μ‐η44‐C6Et4RH)(μ‐η22‐Me3SiC?CSiMe3)] (R=nBu ( 8 a ), p‐tolyl ( 8 b )) by treating [Ta2Cl4(μ‐C4Et4)(μ‐η22‐Me3SiC?CSiMe3)] ( 6 ) with 2‐butyne, 1‐hexyne, and p‐tolylacetylene without any isomers, at room temperature or low temperature were key for clarifying the [4+2] cycloaddition mechanism because of the restricted rotation behavior of the two‐electron reduced arene ligands without dissociation from the dinuclear tantalum center.  相似文献   

11.
Mixed-Ligand Complexes of Rhenium IV. The Reaction of [ReNCl2(Me2PhP)3] with Dithiocarbamates. X-Ray Crystal Structures of trans-Chloro-dimethyldithiocarbamato-bis(dimethylphenylphosphine) nitridorhenium(V), [ReN(Cl)(Me2PhP)2(Me2dtc)], and Bis(diethyldithiocarbamato)(dimethylphenylphosphine)nitridorhenium(V), [ReN(Cl)(Me2PhP)(Et2dtc)2] [ReNCl2(Me2PhP)3] reacts with dialkyldithiocarbamates, R2dtc?, under a stepwise ligand exchange. Final products of these reactions are the well-known [ReN(R2dtc)2] bischelates. Intermediatelly, however, complexes of the general formulae [ReN(Cl)(Me2PhP)2(R2dtc)] and [ReN(Me2PhP)(R2dtc)2] can be isolated. Representatives have been structurally characterized. [ReN(Cl)(Me2PhP)2(Me2dtc)] crystallizes monoclinic in the space group P21/c, Z = 4. The dimensions of the unit cell are a = 13.071(3); b = 11.622(1); c = 15.667(3) Å; β = 97.09(1)°. The rhenium atom has a distorted octahedral environment; the Re≡N bond length is 1.71(1) Å. The Re? Cl bond distance is markedly lengthened (2.665(2) Å) as a consequence of the strong trans labilizing influence of the coordinated nitrido ligand. [ReN(Me2PhP)(Et2dtc)2] crystallizes monoclinic in the space group P21/c, Z = 4, a = 17.262(3); b = 14.915(2); c = 9.888(2); β = 76.35(8)°. The equatorial coordination sphere is occupied by one phosphorus atom and three sulphur atoms. One of the dithiocarbamate ligands is coordinated bidentately; the second one with two distinct Re? S bond lengths. The Re? S(4) distance is 2.7983(2) Å which can be discussed as a weak interaction with the metal.  相似文献   

12.
A series of binuclear nickel complexes bearing N-(5,6,7-trihydroquinolin-8-ylidene)amino CH(C6H4-4-R2){4-C6H2-2,6-R12N-(C5H3NC4H6)}2 [R1 = Me, R2 = OH L1 , R1 = Et, R2 = OH L2 , R1 = Me, R2 = H L3 , R1 = Me, R2 = OCH3 L4 ] has been synthesized and characterized. In the presence of either methylaluminoxane (MAO) or Et2AlCl, all nickel complexes exhibited high activities up to 3.33 × 106 g (PE)·mol−1(Ni)·hr−1 toward ethylene polymerization, producing high branched polyethylenes (PEs). The aluminum cocatalysts have significantly affected the properties of resultant PE; with MAO as the cocatalyst, the resultant PE shows higher molecular weight and possesses only one Tm value, meanwhile Et2AlCl as the cocatalyst, the obtained PE indicates lower molecular weight and two melting points. The microstructures of those PEs determined by their 13C NMR spectra illustrate the similar densities but different types of branches, in which the PE obtained with Et2AlCl shows high methyl branch selectivity (>80%), and the PE produced by MAO has 50% methyl and another half of longer branches. The branched PEs are consistent to the chain migration happened in the ethylene polymerization.  相似文献   

13.
Synthesis, Structure, and Photochemical Behavior of Olefine Iridium(I) Complexes with Acetylacetonato Ligands The bis(ethene) complex [Ir(κ2‐acac)(C2H4)2] ( 1 ) reacts with tertiary phosphanes to give the monosubstitution products [Ir(κ2‐acac)(C2H4)(PR3)] ( 2 – 5 ). While 2 (R = iPr) is inert toward PiPr3, the reaction of 2 with diphenylacetylene affords the π‐alkyne complex [Ir(κ2‐acac)(C2Ph2)(PiPr3)] ( 6 ). Treatment of [IrCl(C2H4)4] with C‐functionalized acetylacetonates yields the compounds [Ir(κ2‐acacR1,2)(C2H4)2] ( 8 , 9 ), which react with PiPr3 to give [Ir(κ2‐acacR1,2)(C2H4)(PiPr3)] ( 10 , 11 ) by displacement of one ethene ligand. UV irradiation of 5 (PR3 = iPr2PCH2CO2Me) and 11 (R2 = (CH2)3CO2Me) leads, after addition of PiPr3, to the formation of the hydrido(vinyl)iridium(III) complexes 7 and 12 . The reaction of 2 with the ethene derivatives CH2=CHR (R = CN, OC(O)Me, C(O)Me) affords the compounds [Ir(κ2‐acac)(CH2=CHR)(PiPr3)] ( 13 – 15 ), which on photolysis in the presence of PiPr3 also undergo an intramolecular C–H activation. In contrast, the analogous complexes [Ir(κ2‐acac)(olefin)(PiPr3)] (olefin = (E)‐C2H2(CO2Me)2 16 , (Z)‐C2H2(CO2Me)2 17 ) are photochemically inert.  相似文献   

14.
The iron complexes [(Et2Sb)4Fe4(CO)14] ( 1 ), [(nPr2Sb)4Fe3(CO)10] ( 2 ), [{(Me3SiCH2)2Sb}4Fe2(CO)6] ( 3 ), and [2‐(Me2NCH2)C6H4SbFe2(CO)8] ( 4 ) were prepared by reactions of distibanes with Fe2(CO)9. Compounds 1 – 4 were characterized by X‐ray diffraction, 1H NMR and IR spectroscopy as well as mass spectrometry; complex 1 was additionally characterized by density functional calculations.  相似文献   

15.
Quantum chemical calculations using density functional theory at the BP86/TZ2P level have been carried out to determine the geometries and stabilities of Group 13 adducts [(PMe3)(EH3)] and [(PMe3)2(E2Hn)] (E=B–In; n=4, 2, 0). The optimized geometries exhibit, in most cases, similar features to those of related adducts [(NHCMe)(EH3)] and [(NHCMe)2(E2Hn)] with a few exceptions that can be explained by the different donor strengths of the ligands. The calculations show that the carbene ligand L=NHCMe (:C(NMeCH)2) is a significantly stronger donor than L=PMe3. The equilibrium geometries of [L(EH3)] possess, in all cases, a pyramidal structure, whereas the complexes [L2(E2H4)] always have an antiperiplanar arrangement of the ligands L. The phosphine ligands in [(PMe3)2(B2H2)], which has Cs symmetry, are in the same plane as the B2H2 moiety, whereas the heavier homologues [(PMe3)2(E2H2)] (E=Al, Ga, In) have Ci symmetry in which the ligands bind side‐on to the E2H2 acceptor. This is in contrast to the [(NHCMe)2(E2H2)] adducts for which the NHCMe donor always binds in the same plane as E2H2 except for the indium complex [(NHCMe)2(In2H2)], which exhibits side‐on bonding. The boron complexes [L2(B2)] (L=PMe3 and NHCMe) possess a linear arrangement of the LBBL moiety, which has a B?B triple bond. The heavier homologues [L2(E2)] have antiperiplanar arrangements of the LEEL moieties, except for [(PMe3)2(In2)], which has a twisted structure in which the PInInP torsion angle is 123.0°. The structural features of the complexes [L(EH3)] and [L2(E2Hn)] can be explained in terms of donor–acceptor interactions between the donors L and the acceptors EH3 and E2Hn, which have been analyzed quantitatively by using the energy decomposition analysis (EDA) method. The calculations predict that the hydrogenation reaction of the dimeric magnesium(I) compound L′MgMgL′ with the complexes [L(EH3)] is energetically more favorable for L=PMe3 than for NHCMe.  相似文献   

16.
Abstract

The 1H nmr spectra of freshly prepared CDCl3 solutions of the complexes trans-[PtCl2(olefin)(L)], where L is pyridine or a substituted pyridine, show no coupling between 1 9 5Pt and the α protons of pyridine (3Jpt–NCH) owing to rapid exchange of complexed L with free L. On standing, the adventitious free L is gradually consumed by formation of trans-[PtCl2(L)2] and the spectra of the aged solutions show the coupling. When CDCl, solutions of [PtBr2(Olb)(Lb)] and [PtCl2(Ola)(La)], where Ola =C2H4, are mixed, a total of 6 ethylene complexes can be identified in solution. Accordingly halogen trading, Ol trading or/and L trading occurs and the solution probably contains a total of 12 complexes.  相似文献   

17.
The monomeric octa-aza bis-α-diimine macrocyclic complex [CoII(C10H20N8)(H2O)](ClO4)2 I, undergoes various reactions on the macrocyclic ligand. Reaction of complex I with triethylamine in double molar proportions, followed by slow aerial oxidation, produces a molecular dimeric complex [CoII(C10H14N8)]2, III, and a novel Co(I) complex [CoI(C10H19N8)], IV. Complex III is a staggered cofacial dimer with a cobalt-cobalt bond length 2.86(1) Å. The macrocyclic ligand of the complex contains an a-diimine function in each five-membered chelate ring, and a three-atom N-C-N? delocalized system in each six-membered chelate ring. Complex IV has the 5-5-6-6 chelate arrangement because one α-diimine moiety is rearranged to a syn-anti configuration. In the structure, the two fused six-membered chelate rings are fully conjugated and the two fused five-membered rings are saturated. However, when complex I reacts with excess triethylamine under the similar conditions, a dimeric complex of another type, [CoII(C10Hl6N8)]2, II, was generated, in which one N-N bond of the macrocyclic ligand is broken. Complex IV can be isolated also from the reaction of complex I with excess hydrazine, followed by slow aerial oxidation. When hydrazine in double molar proportions was used, complex [CoI(C10H17N8)(NHNH)] V, which contains a coordinated diazene ligand, was obtained. Only one six-membered chelate ring of complex V is deprotonated and oxidized to form a three-atom N-C-N? delocalized system. The structures of octa-aza complexes I-V are determined by X-ray crystallography: I, orthorhombic, C mca, a = 11.646(4), b = 17.049(3), c = 10.706(3) Å, Z = 4, R = 0.045, Rw = 0.047, based on 1024 reflections with I > 2σ(I); II, monoclinic, P 21/c, a = 9.814(3), b = 22.583(6). c = 14.632(9) Å, β = 98.90(5)°, Z = 4, R = 0.085, Rw = 0.101, based on 2033 reflections with I > 2σ(I); III, tetragonal, P 4/nmm, a = 15.614(3), c = 6.498(2) Å, Z = 4, R = 0.081, Rw = 0.115, based on 340 reflections with I > 2σ(I); IV, orthorhombic, P bca, a = 8.484(1), b = 16.662(3), c = 18.760(2) Å, Z = 8, R = 0.029, Rw = 0.024, based on 1441 reflections with I > 2σ(I); V, monoclinic, P 21/m, a = 7.892(3), b = 11.713(6), c = 9.326(4) Å, β = 108.03(3), Z = 2, R = 0.047, Rw = 0.056, based on 948 reflections with I > 2σ(I).  相似文献   

18.
The coordination chemistry of platinum(II) with a series of thiosemicarbazones {R(H)C2=N3‐N2(H)‐C1(=S)‐N1H2, R = 2‐hydroxyphenyl, H2stsc; pyrrole, H2ptsc; phenyl, Hbtsc} is described. Reactions of trans‐PtCl2(PPh3)2 precursor with H2stsc (or H2ptsc) in 1 : 1 molar ratio in the presence of Et3N base yielded complexes, [Pt(η3‐ O, N3, S‐stsc)(PPh3)] ( 1 ) and [Pt(η3‐ N4, N3, S‐ptsc)(PPh3)] ( 2 ), respectively. Further, trans‐PtCl2(PPh3)2 and Hbtsc in 1 : 2 (M : L) molar ratio yielded a different compound, [Pt(η2‐ N3, S‐btsc)(η1‐S‐btsc)(PPh3)] ( 3 ). Complex 1 involved deprotonation of hydrazinic (‐N2H‐) and hydroxyl (‐OH) groups, and stsc2? is coordinating via O, N3, S donor atoms, while complex 2 involved deprotonation of hydrazinic (‐N2H‐) and ‐N4H groups and ptsc2? is probably coordinating via N4, N3, S donor atoms. Reaction of PdCl2(PPh3)2 with Hbtsc‐Me {C6H5(CH3)C2=N3‐N2(H)‐C1(=S)‐N1H2} yielded a cyclometallated complex [Pd(η3‐C, N3, S‐btsc‐Me)(PPh3)] ( 4 ). These complexes have been characterized with the help of analytical data, spectroscopic techniques {IR, NMR (1H, 31P), U.V} and single crystal X‐ray crystallography ( 1 , 3 and 4 ). The effects of substituents at C2 carbon of thiosemicarbazones on their dentacy and cyclometallation are emphasized.  相似文献   

19.
Summary Equimolar quantities of [MI2(CO)3(NCMe)2] (M = Mo or W) and C3H4N2 (pyrazole) react in CH2C12 at room temperature to give the iodo-bridged dimers [M(μ-I) (CO)3(C3H4N2)]2 (1) and (2). Two equivalents of C3H4N2 react with [MI2(CO)3(NCMe)2] (M = Mo or W) to give the bis(pyrazole) complexes [MI2(CO)3(C3H4N2)2] (3) and (4) in good yield. Three and four equivalents of pyrazole react with [MoI2(CO)3(NCMe)2] to give the cationic complexes [MoI(CO)3(C3H4N2)3]I (5) and [MoI(CO)2(C3H4N2)4]I (6), respectively. The mixed ligand complexes [MI2(CO)3(C3H4N2)L] (M = Mo or W; L = PPh3, AsPh3 or SbPh3) (7)-(12) are prepared by reacting equimolar amounts of [MI2(CO)3(NCMe)2] and L in CH2C12 at room temperature, followed by an in situ reaction with one equivalent of C3H4N2. The MoSnCl3 complex [MoCl(SnCl3)(CO)3(C3H4N2)2] (13) is prepared in an analogous manner using acetone as the solvent, whilst the mixed ligand compound [MoCl(SnQ3)(CO) 3(C3H4N2)(PPh3)] (14) was prepared by treating the dimeric complex [Mo(μ-Cl)(SnCl3)(CO)3(PPh3)]2 with two equivalents of C3H4N2. All the new complexes were characterised by elemental analysis (carbon, hydrogen and nitrogen), i.r. and 1H n.m.r. spectroscopy.  相似文献   

20.
On the Reactivity of Titanocene Complexes [Ti(Cp′)22‐Me3SiC≡CSiMe3)] (Cp′ = Cp, Cp*) towards Benzenedicarboxylic Acids Titanocene complexes [Ti(Cp′)2(BTMSA)] ( 1a , Cp′ = Cp = η5‐C5H5; 1b , Cp′ = Cp* = η5‐C5Me5; BTMSA = Me3SiC≡CSiMe3) were found to react with iodine and methyl iodide yielding [Ti(Cp′)2(μ‐I)2] ( 2a / b ; a refers to Cp′ = Cp and b to Cp′ = Cp*), [Ti(Cp′)2I2] ( 3a / b ) and [Ti(Cp′)2(Me)I] ( 4a / b ), respectively. In contrast to 2a , complex 2b proved to be highly moisture sensitive yielding with cleavage of HCp* [{Ti(Cp*)I}2(μ‐O)] ( 7 ). The corresponding reactions of 1a / b with p‐cresol and thiophenol resulted in the formation of [Ti(Cp′)2{O(p‐Tol)}2] ( 5a / b ) and [Ti(Cp′)2(SPh)2] ( 6a / b ), respectively. Reactions of 1a and 1b with 1,n‐benzenedicarboxylic acids (n = 2–4) resulted in the formation of dinuclear titanium(III) complexes of the type [{Ti(Cp′)2}2{μ‐1,n‐(O2C)2C6H4}] (n = 2, 8a / b ; n = 3, 9a / b ; n = 4, 10a / b ). All complexes were fully characterized analytically and spectroscopically. Furthermore, complexes 7 , 8b , 9a ·THF, 10a / b were also be characterized by single‐crystal X‐ray diffraction analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号