首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Pentafluorophenyliodine(III) Compounds. 2. Fluorine-Aryl Substitution Reactions on Iodinetrifluoride: Synthesis of Pentafluorophenyliodinedifluoride C6F5IF2 and Bis(pentafluorophenyl)iodonium Pentafluorophenylfluoroborates[(C6F5)2I]+[(C6F5)nBF4?n]? Mono- and disubstitution can be achieved in the fluorine-aryl substitution reaction on the low-temperature phase IF3 in CH2Cl2 at ?78°C depending on the aryl transfer reagent. With B(C6F5)3 [(C6F5)2I]+ [(C6F5)nBF4?n]? (68% yield) and with Cd(C6F5)2 C6F5IF2 (97% yield) is obtained whereas with C6F5SiMe3 no fluorine-aryl substitution takes place on IF3 even under basic conditions (EtCN or F? addition). At ?78°C in EtCN solution IF3 does not disproportionate but attacks the solvent under formation of HF.  相似文献   

2.
The substitution of hypervalently bonded fluorine atoms in C6F5IF4 was performed with C6F5BF2 and resulted in the new salt [(C6F5)2IF2][BF4]. The iodonium(V) salt was characterized by multi‐NMR and Raman spectroscopy and X‐ray crystal structure analysis. The fluorinating ability of the new electrophilic cation [(C6F5)2IF2]+ was exemplified in reactions with monovalent iodine compounds (C6F5I, p‐FC6H4I, and I2) and with electron‐poor tri(organyl)pnictanes ER3 (E = P, As, Sb, Bi; R = C6F5). In a heterogeneous reaction with CsF in MeCN the [(C6F5)2IF2]+ cation forms the dinuclear [{(C6F5)2IF2}2F]+ cation.  相似文献   

3.
Pentafluorophenyliodine(III) Compounds. 3 Pentafluorophenyliodinedifluoride: Alternative Preparations, Molecular Structure, and Properties The formation of C6F5IF2 ( 1 ) by oxidative fluorination of C6F5I ( 2 ) using ClF, CF3OCl, BrF5, C6F5BrF2, and C6F5BrF4 is described. Highest purity and yield of 1 was achieved by a modified low temperature fluorination with F2. Thermolysis of 1 delivered perfluoroiodocyclohexadiene‐1,4 and perfluoroiodocyclohexene besides 2 . X‐ray structural analysis of 1 exhibits the fluoride donor and acceptor ability. 1 is spectroscopically characterized by NMR (19F, 13C), IR and Ra. The influence of the change in the oxidation number of iodine in 2 , 1 and C6F5IF4 ( 3 ) on spectroscopic and structural results will be discussed. Minimum energy geometries and charge distributions are calculated (RHF, LANL2DZ) for 1 , 2 and related compounds.  相似文献   

4.
The relative fluoride donor ability: C6F5BrF2 > C6F5IF2 > C6F5IF4 was outlined from reactions with Lewis acids of graduated strength in different solvents. Fluoride abstraction from C6F5HalF2 with BF3·NCCH3 in acetonitrile (donor solvent) led to [C6F5HalF·(NCCH3)n][BF4]. The attempted generation of [C6F5BrF]+ from C6F5BrF2 and anhydrous HF or BF3 in weakly coordinating SO2ClF gave C6F5Br besides bromoperfluorocycloalkenes C6BrF7 and 1-BrC6F9. In reactions of C6F5IF2 with SbF5 in SO2ClF the primary observed intermediate (19F NMR, below 0 °C) was the 4-iodo-1,1,2,3,5,6-hexafluorobenzenium cation, which converted into C6F5I and 1-IC6F9 at 20 °C. The reaction of C6F5IF4 with SbF5 in SO2ClF below −20 °C gave the cation [C6F5IF3]+ which decomposed at 20 °C to C6F5I, 1-iodoperfluorocyclohexene, and iodoperfluorocyclohexane. Principally, the related perfluoroalkyl compound C6F13IF4 showed a different type of products in the fast reaction with AsF5 in CCl3F (−60 °C) which resulted in C6F14. Intermediate and final products of C6F5HalFn−1 (n = 3, 5) with Lewis acids were characterized by NMR in solution. Stable solid products were isolated and analytically characterized.  相似文献   

5.
Silver(I) compounds with perfluorinated aromatic thiols (4-nonafluorodiphenylthiol C6F5C6F4SH (HL1), 2-heptafluoronaphthalenethiol C10F7SH (HL2), and pentafluorothiophenol C6F5SH (HL3), namely AgL1 (I), AgL2 (II), AgL3 (III), were prepared. The thermal properties of compounds I–III and the composition of thermolysis products were studied. By powder X-ray diffraction and electron microscopy, it was shown that thermolysis of compounds I–III under argon and thermolysis of compound III in air yield Ag nanoparticles.  相似文献   

6.
The crystal structure of (C6F5S)3N has been examined. The compounds (C6F5S)2NX, X = SiMe3 and ½ Hg have been prepared from (C6F5S)2NH and characterised. In a number of other reactions, such as oxidation and irradiation, the S? N bond in (C6F5S)2NH was readily fractured, forming the disulfide, (C6F5S)2. The compound (C6F5S)3N has been found to be unreactive. Details of the mass and 13C NMR spectra of (C6F5S)nNH3–n, n = 1, 2, 3 are reported.  相似文献   

7.
Two routes to RFIF6 compounds were investigated: (a) the substitution of F by RF in IF7 and (b) the fluorine addition to iodine in RFIF4 precursors. For route (a) the reagents C6F5SiMe3, C6F5SiF3, [NMe4][C6F5SiF4], C6F5BF2, and 1,4-C6F4(BF2)2 were tested. C6F5IF4 and CF3CH2IF4 were used in route (b) and treated with the fluoro-oxidizers IF7, [O2][SbF6]/KF, and K2[NiF6]/KF. The observed sidestep reactions in case of routes (a) and (b) are discussed. Interaction of C6F5SiX3 (X = Me, F), C6F5BF2, 1,4-C6F4(BF2)2 with IF7 gave exclusively the corresponding ring fluorination products, perfluorinated cyclohexadiene and cyclohexene derivatives, whereas [NMe4][C6F5SiF4] and IF7 formed mixtures of C6FnIF4 and C6FnH compounds (n = 7 and 9). CF3CH2IF4 was not reactive towards the fluoro-oxidizer IF7, whereas C6F5IF4 formed C6FnIF4 compounds (n = 7 and 9). C6F5IF4 and CF3CH2IF4 were inert towards [O2][SbF6] in anhydrous HF. CF3CH2IF4 underwent C-H fluorination and C-I bond cleavage when treated with K2[NiF6]/KF in HF. The fluorine addition property of IF7 was independently demonstrated in case of perfluorohexenes. C4F9CFCF2 and IF7 underwent oxidative fluorine addition at −30 °C, and the isomers (CF3)2CFCFCFCF3 (cis and trans) formed very slowly perfluoroisohexanes even at 25 °C. The compatibility of IF7 and selected organic solvents was investigated. The polyfluoroalkanes CF3CH2CHF2 (PFP), CF3CH2CF2CH3 (PFB), and C4F9Br are inert towards iodine heptafluoride at 25 °C while CF3CH2Br was slowly converted to CF3CH2F. Especially PFP and PFB are new suitable organic solvents for IF7.  相似文献   

8.
New Syntheses and Crystal Structures of Bis(fluorophenyl) Mercury, Hg(Rf)2 (Rf = C6F5, 2, 3, 4, 6‐F4C6H, 2, 3, 5, 6‐F4C6H, 2, 4, 6‐F3C6H2, 2, 6‐F2C6H3) Bis(fluorophenyl) mercury compounds, Hg(Rf)2 (Rf = C6F5, C6HF4, C6H2F3, C6H3F2), are prepared in good yields by the reactions of HgF2 with Me3SiRf. The crystal structures of Hg(2, 3, 4, 6‐F4C6H)2 (monoclinic, P21/n), Hg(2, 3, 5, 6‐F4C6H)2 (monoclinic, C2/m), Hg(2, 4, 6‐F3C6H2)2 (monoclinic, P21/c) and Hg(2, 6‐F2C6H3)2 (triclinic, P1) are described.  相似文献   

9.
The pyrolysis of C6F5I has been studied by the toluene carrier method over the temperature range of 900–978°K with contact times of 0.4–2.0 seconds and total pressures of 11.2–19.5 torr. Percent decomposition ranged from 8.6 to 97.7%. With toluene-to-C6F5I molar ratios of greater than 150, 85–100% of the C6F5 released abstracts a hydrogen atom from toluene to produce C6F5H. No significant quantities of I2 were observed and the only major gaseous product was HI. Within the limits of the experimental method the decomposition of C6F5I was first order and homogeneous. Least squares analysis of log k1 and 103/T(C6F5I → C6F5 + I) values gives while a weighted line of best fit yields. Based on this latter equation D[C6F5? I] at 298°K is estimated as 66.2 kcal/mole.  相似文献   

10.
Structure of Diaza-diphosphetidin, [(C6F5)F2P? NCH3]2 The synthesis, n. m. r. spectra and crystal structure of the diaza-diphosphetidin, [(C6F5)F2P? NCH3]2, are reported.  相似文献   

11.
Dihalogen(Pentafluorophenyl)sulfonium(IV) Hexafluoroarsenate C6F5SX2+AsF6? (X = Cl, Br) and Crystal Structure of Di(pentafluorophenyl)sulfane (C6F5)2S The preparation and spectroscopic characterisation of the halogensulfonium salts C6F5SCl2+AsF6? and C6F5SBr2+AsF6? is reported. The new salts are much more stable than their trifluoromethyl derivatives. In addition the crystal structure of (C6F5)2S is reported. Space group P43212, Z = 4, 478 unique observed diffractometer data, Rint. = 0.07, lattice constants: a = 569.0(5) pm, c = 3785.8(22) pm, V = 1225 times; 10?30 m3.  相似文献   

12.
The reaction of (C6F5)2HGeGeH(C6F5)2 with triethylbismuth affords a new polynuclear germylbismuth derivative, [(C6F5Ge]4Bi2 (1). The metal framework of molecule1 has the form of a gable roof built by two central Bi atoms and four peripheral Ge atoms with covalent Bi-Bi bonds [3.045(3) Å], Bi-Ge [2.724(5)-2.755(4) Å] and Ge-Ge [2.444(6), 2.465(6) Å].Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 921–924, May, 1994.  相似文献   

13.
The geometries and interaction energies of complexes of pyridine with C6F5X, C6H5X (X=I, Br, Cl, F and H) and RFI (RF=CF3, C2F5 and C3F7) have been studied by ab initio molecular orbital calculations. The CCSD(T) interaction energies (Eint) for the C6F5X–pyridine (X=I, Br, Cl, F and H) complexes at the basis set limit were estimated to be ?5.59, ?4.06, ?2.78, ?0.19 and ?4.37 kcal mol?1, respectively, whereas the Eint values for the C6H5X–pyridine (X=I, Br, Cl and H) complexes were estimated to be ?3.27, ?2.17, ?1.23 and ?1.78 kcal mol?1, respectively. Electrostatic interactions are the cause of the halogen dependence of the interaction energies and the enhancement of the attraction by the fluorine atoms in C6F5X. The values of Eint estimated for the RFI–pyridine (RF=CF3, C2F5 and C3F7) complexes (?5.14, ?5.38 and ?5.44 kcal mol?1, respectively) are close to that for the C6F5I–pyridine complex. Electrostatic interactions are the major source of the attraction in the strong halogen bond although induction and dispersion interactions also contribute to the attraction. Short‐range (charge‐transfer) interactions do not contribute significantly to the attraction. The magnitude of the directionality of the halogen bond correlates with the magnitude of the attraction. Electrostatic interactions are mainly responsible for the directionality of the halogen bond. The directionality of halogen bonds involving iodine and bromine is high, whereas that of chlorine is low and that of fluorine is negligible. The directionality of the halogen bonds in the C6F5I– and C2F5I–pyridine complexes is higher than that in the hydrogen bonds in the water dimer and water–formaldehyde complex. The calculations suggest that the C? I and C? Br halogen bonds play an important role in controlling the structures of molecular assemblies, that the C? Cl bonds play a less important role and that C? F bonds have a negligible impact.  相似文献   

14.
A promising approach to the unknown type of [Ar′(Ar)IF2]X salts is offered. x-FC6H4IF4 (x=2, 3, 4) reacts with C6F5BF2 in CH2Cl2 and forms [x-FC6H4(C6F5)IF2][BF4] salts in good yields. For [4-FC6H4(C6F5)IF2][BF4] the fluoro-oxidizer property is shown in reactions with weakly reducing agents like E(C6F5)3 (E=P, As, Sb, Bi) and ArI (Ar=4-FC6H4, C6F5). The fluorine/aryl substitution method is also applied to the synthesis of [(4-FC6H4)2IF2][BF4], an example with two identical aryl groups in the difluoroiodonium(V) moiety.  相似文献   

15.
The oxidation of C6F5I by oxidizers containing positive chlorine was investigated with the intention to prepare pentafluorophenyliodine (III) compounds: C6F5IX2, where X are halides or oxoderivatives. Using ClF, ClOCF3, Cl2/AlCl3 or Cl2O as oxidizers C6F5 IF2, C6F5 I Cl2 and C6F5I (OCl)2 - all thermally unstable - could be prepared and characterized.In contrast to these compounds the perfluoroaromatic carboxylates: C6F5I [O(O)C RF]2 are crystalline solids thermally stable up to 200 °C. Single crystal investigations show T-coordinated iodine with significant secondary bonding between iodine and the keto oxygens. C6F5 IO-formed by hydrolysis of C6F5IX2 - changes if stored at RT forming (C6F5)2I IO3.(C6F5)2I+ - formation is also observed when C6F5 IO is heated in inert (C6F5I, C6H6, CCl4 …), protic (H2O, CH3OH, …) and strong acidic (FSO3H …) dilution medium.C6F5IO reacts with acids, acid anhydrides and acid halides as could be shown by the preparation of C6F5 ICl2 and C6F5 ICl (NO3).Starting with C6F5 IX2 different preparative ways for (C6F5)2 I+ - compounds were successful. Principly (C6F5)2 IX - compounds decompose thermally forming C6F5I + C6F5X.C6F5 IX4 - compounds can be obtained from C6F5 IF4 which is the specific displacement product of IF5 with Si (C6F5)4. By nucleophilic displacement it is possible to prepare C6F5 IF2O, C6F5 IO2, C6F5 IO (OAcF)2 and C6F5 I [OC(CH3)2  C(CH3)2O]2,wich are all white, thermally stable solids.For the fluorine-ligand-exchange we used silycompounds as reagents. If the ligand is oxidable by C6F5 I(V) a stepwise reduction via C6F5I(III) to C6F5I could be shown by NMR-measurements.  相似文献   

16.
Mononuclear palladium‐hydroxo complexes of the type [Pd(N–N)(C6F5)(OH)][(N–N) = 2,2′‐bipyridine (bipy), 4,4′‐dimethyl‐2,2′‐bipyridine (Me2bipy), 1,10‐phenantroline (phen) or N,N,N′,N′‐tetramethylethylenediamine (tmeda) react with phenols ArOH in tetrahydrofuran giving the corresponding aryloxo complexes [Pd(N–N)(C6F5)(OAr)]. Elemental analyses and spectroscopic (IR, 1H and 19F) methods have been used to characterize the new complexes. The X‐ray crystal structure of [Pd(tmeda)(C6F5)(OC6H4NO2p)] has been determined. In the crystal packing the planes defined by two C6H4 rings show a parallel orientation. There are also intermolecular C–H···F and C‐H···O hydrogen bonds.  相似文献   

17.
Xenon(II ) chlorine compounds can be obtained as the isolable organo derivatives C6F5XeCl and [(C6F5Xe)2Cl][AsF6] (whose cation is depicted) in 85 and 91 % yield, respectively. These compounds decompose vigorously at 36°C and 100°C, respectively, leading to the formation of C6F5Cl and Xe gas and of C6F5Cl, C6F6, and [C6F5Xe][AsF6], respectively.  相似文献   

18.
Te(C6F5)4 was prepared from the reactions of TeCl4 or Te(C6F5)2Cl2 with Grignard reagents or AgC6F5 in moderate to good yields. Substitution reactions with Me3SiX (X = Cl, Br, OSO2CF3), with equimolar amounts of Br2, with AgNO3 and with H[BF4] or BF3·OEt2 yielded the Te(C6F5)3X derivatives (X = Cl, Br, OSO2CF3, NO3, BF4). Oxidation reactions of Cd, Hg, and Pd0 complexes led to Te(C6F5)2 and the corresponding bis(pentafluorophenyl) derivatives M(C6F5)2 (M = Cd, Hg, Pd) and with InBr to In(C6F5)2Br. From very slow hydrolysis of Te(C6F5)4 the oxide Te(C6F5)2O was prepared. The thermal decomposition, the NMR and mass spectra of the partially new compounds are discussed. The crystal structures of Te(C6F5)3Br (monoclinic, P21/a, Z = 4), [Te(C6F5)3][OSO2CF3] (monoclinic, P21/n, Z = 16) and [Te(C6F5)2O]2 (triclinic, P1¯, Z = 2) were determined.  相似文献   

19.
The Lewis acid (C6F5)3B was reacted with ICN, NH2CN, C3N3X3 (X = H, Cl, F). The resulting Lewis acid base adducts ( 1—5 ) were fully characterized by analytic and spectroscopic methods. Additionally, the structures of the adducts 1—4 were determined by single crystal X‐ray analyses. It has been qualitatively shown, that a high field shift of the 11B as well as the 19F NMR resonances of the o‐F atoms of the C6F5‐substituents suggests a longer B—N distance.  相似文献   

20.
Using silyl protected organic hydroxo compounds substitution of fluorine in IF5 is successful.Reacting IF5 with Si(OCH3)4 in CH3CN or SO2 using different molar ratios it was shown that in the series IF5?n(OCH3)n only the first member IF4(OCH3) (n=1) is stable enough to be isolated. The product in solution with n=2 bismutates to products with n=1 and n=3 if isolated as solids. The last one decomposes to the new oxo compound IF2O(OCH3) under elimination of CH3OCH3. With n=4,5 only redox reaction products could be isolated.IF2O(OCH3) can also be obtained by treating IF4(OCH3) with (CH3)6Si2O. Similarly reaction of IF5 with the disiloxane represents a new method to win IOF3. Excess of the oxygen transfer reagent leads to formation of IO2F and I2O5. An other oxo compound, IO(CH3COO)3, can be prepared by disolving IF5, IOF3 or IO2F in acetic acid anhydride.Reactions of IF5 with trimethylsilyl protected fluorinated benzoic acids RfCOOSi(CH3)3 (Rf = C6F5, 4HC6F4) appeared to be independent of the educts molar ratios because the only products are IF(RfCOO)4.In order to stabilize iodine (V) derivates with bifunctional chelating oxo ligands we applicated bis(trimethylsilyl) pinacolate, and in smooth reactions we yielded IF3[OC(CH3)2C(CH3)2O] and IF[OC(CH3)2  C(CH3)2O]2, in which iodine is part of five membered heterocyclic rings. The 19F-nmr-spectra are consistent with the diolate occupying the axiale and equatorial positions.An extension of the silyl method is the new synthesis of C6F5IF4 which could be obtained in the smooth reaction of IF5 with stochiometric amounts of Si(C6F5)4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号