首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic properties of α‐LixV2O5 (x=0.5 and 1) are investigated using first principle calculations based on density functional theory with local density approximation. Different intercalation sites for Li in the V2O5 lattices are considered, showing different influences on the electronic structures of LixV2O5. The lowest total energy is found when Li is only intercalated along the c axis between two bridging oxygen ions of sequential V2O5 layers. The intercalation of Li into V2O5 does not change the electron transition property of V2O5, which is an indirect band gap semiconductor, but leads to a reduction of vanadium ions and an increase of the Fermi level of LixV2O5 arising from the electron transfer from the Li 2 s orbital to the initially empty conduction band of the V2O5 host.  相似文献   

2.
The environmental instability of single‐ or few‐layer black phosphorus (BP) has become a major hurdle for BP‐based devices. The degradation mechanism remains unclear and finding ways to protect BP from degradation is still highly challenging. Based on ab initio electronic structure calculations and molecular dynamics simulations, a three‐step picture on the ambient degradation of BP is provided: generation of superoxide under light, dissociation of the superoxide, and eventual breakdown under the action of water. The well‐matched band gap and band‐edge positions for the redox potential accelerates the degradation of thinner BP. Furthermore, it was found that the formation of P‐O‐P bonds can greatly stabilize the BP framework. A possible protection strategy using a fully oxidized BP layer as the native capping is thus proposed. Such a fully oxidization layer can resist corrosion from water and leave the BP underneath intact with simultaneous high hole mobility.  相似文献   

3.
《Chemphyschem》2003,4(5):445-456
The dissociation dynamics of trans‐azomethane upon excitation to the S1(n,π*) state with a total energy of 93 kcal mol?1 is investigated using femtosecond‐resolved mass spectrometry in a molecular beam. The transient signal shows an opposite pump–probe excitation feature for the UV (307 nm) and the visible (615 nm) pulses at the perpendicular polarization in comparison with the signal obtained at the parallel polarization: The one‐photon symmetry‐forbidden process excited by the UV pulse is dominant at the perpendicular polarization, whereas the two‐photon symmetry‐allowed process initiated by the visible pulse prevails at the parallel polarization. At the perpendicular polarization, we found that the two C? N bonds of the molecule break in a stepwise manner, that is, the first C? N bond breaks in ≈70 fs followed by the second one in ≈100 fs, with the intermediate characterized. At the parallel polarization, the first C? N bond cleavage was found to occur in 100 fs with the intensity of the symmetry‐allowed transition being one order of magnitude greater than the intensity of the symmetry‐forbidden transition at the perpendicular polarization. Theoretical calculations using time‐dependent density functional theory (TDDFT) and the complete active space self‐consistent field (CASSCF) method have been carried out to characterize the potential energy surface for the ground state, the low‐lying excited states, and the cationic ground state at various levels of theory. Combining the experimental and theoretical results, we identified the elementary steps in the mechanism: The initial driving force of the ultrafast bond‐breaking process of trans‐azomethane (at the perpendicular polarization) is due to the CNNC torsional motion initiated by the vibronic coupling through an intensity‐borrowing mechanism for the symmetry‐forbidden n–π* transition. Following this torsional motion and the associated molecular symmetry breaking, an S0/S1 conical intersection (CI) can be reached at a torsional angle of 93.1° (predicted at the CASSCF(8,7)/cc‐pVDZ level of theory). Funneling through the S0/S1 CI could activate the asymmetric C? N stretching motion, which is the key motion for the consecutive C? N bond breakages on the femtosecond time scale.  相似文献   

4.
The ability to improve exciton diffusion lengths is a key issue in optimizing many opto‐electronic devices based on conjugated polymers. On the basis of quantum‐chemical calculations, we investigate a strategy consisting of extending the radiative lifetime of energy carriers through incorporation along the polymer backbone of repeating units with forbidden optical transition. The results obtained for poly(p‐phenylenebutadiyne), PPE, and poly(p‐triphenylenebutadiyne), PTPE, show that the larger number of hops performed by the electronic excitations during their lifetime in PTPE is compensated by the smaller hopping length (associated with the reduced conjugation length), so that similar on‐chain diffusion lengths are predicted in both polymers.  相似文献   

5.
Pressure broadening and pressure shift of N2H+ rotational lines perturbed by collisions with He are studied for the first time using experiment and theory. Results are reported from measurements at 88 K for the rotational transitions ${j = 3 \leftarrow 2}$ , ${4 \leftarrow 3}$ , ${5 \leftarrow 4}$ and ${6 \leftarrow 5}$ with frequencies ranging from 0.28 to 0.56 THz. The agreement between experiment and theoretical data derived from close coupling calculations confirms the reliability of a theoretical framework used for state‐to‐state transition rates of interest in the interpretation of spectroscopic data from interstellar molecular clouds. The influence of hyperfine effects on shifts and widths of the rotational lines is discussed in detail. Although in principle possible, experiment and theoretical considerations lead to the conclusion that hyperfine effects only play a minor role.  相似文献   

6.
7.
We present a theoretical study of the energetic and thermodynamic stability of selected phosphorus and arsenic clusters containing 18 to 168 atoms. For this purpose we employ MP2 as well as DFT functionals BP86 and B3LYP with extended basis sets. All procedures predict the family of one-dimensional polymers X18+12n, each with 2n-1 isomers of virtually identical energy, to be more stable than other structures investigated so far. Furthermore, islands of stability result for ring-shaped clusters X24n with Dnd symmetry for n=4 (only for arsenic), 5, 6, and 7. Phosphorus and arsenic show otherwise a very similar behavior. An investigation of basis set effects shows that a doubly polarized triple zeta valence basis (TZVPP) is both necessary and sufficient. In comparison to the reliable spin component scaled MP2 (SCS-MP2) procedure, DFT methods underestimate and MP2 overestimates the stability of larger clusters; the discrepancy increases with the number of atoms. The addition of a long-range dispersion correction to B3LYP energies does not rectify the shortcomings of DFT in comparison with SCS-MP2.  相似文献   

8.
采用量子化学从头算方法, 系统地研究了Si60-Ih及其各种降低对称性后的扭曲构型的稳定性. 找到了5个低能量低对称性(对称性分别为T, Ci, C1, CS和C2) Si60的稳定结构. 分析计算结果表明, 典型的低能量Si60结构对应着一些硅原子凸出球外和一些硅原子凹进球内, 部分Si原子间的成键呈sp3杂化方式.  相似文献   

9.
We present accurate ab initio calculations of the most stable structures of Hen+ clusters in order to determine the more likely ionic core arrangements existing after reaching structural equilibrium of the clusters. Two potential energy surfaces are presented: one for the He2+ and the other with the He3+ linear ion, both interacting with one He atom. The two computed potentials are in turn employed within a classical structure optimization where the overall interaction forces are obtained within the sum‐of‐ potentials approximation described in the main text. Because of the presence of many‐body effects within the ionic core, we find that the arrangements with He3+ as a core turn out to be energetically preferred, leading to the formation of He3+(He)n?3 stable aggregates. Nanoscopic considerations about the relative stability of clusters with the two different cores are shown to give us new information on the dynamical processes observed in the impact ionization experiments of pure helium clusters and the importance of pre‐equilibrium evaporation of the ionic dimers in the ionized clusters.  相似文献   

10.
11.
The most stable forms of E5Li7+ (E=Ge, Sn, and Pb) have been explored by means of a stochastic search of their potential‐energy surfaces by using the gradient embedded genetic algorithm (GEGA). The preferred isomer of the Ge5Li7+ ion is a slightly distorted analogue of the D5h three‐dimensional seven‐pointed starlike structure adopted by the lighter C5Li7+ and Si5Li7+ clusters. In contrast, the preferred structures for Sn5Li7+ and Pb5Li7+ are quite different. By starting from the starlike arrangement, corresponding lowest‐energy structures are generated by migration of one of the E atoms out of the plane with the a corresponding rearrangement of the Li atoms. To understand these structural preferences, we propose a new energy decomposition analysis based on isomerizations (isomerization energy decomposition analysis (IEDA)), which enable us to extract energetic information from isomerization between structures, mainly from highly charged fragments.  相似文献   

12.
With the aid of high-level B3LYP and MP2 calculations, three new neutral structures of glycine (iin, ivn and vn, see Fig. 2) were obtained and validated by frequency calculations. The structural and energetic analyses showed that iin, ivn and vn are enantiomers to the previous IIn, IVn and Vn (J. Am. Chem. Soc. 1992, 114, 9568.), respectively. Owing to the presence of these novel conformers, a redistribution of the populations of glycine conformers is resulted in and causes the remarkable decrease of the most stabilized Ip (from 48% to 38%). It indicated that the simple glycine molecule can show chirality under certain conditions. The interacting modes of glycine enantiomeric pairs (e.g., ivn and IVn) with PG showed large differences (Fig. 4); in addition, their interaction energies corrected with basis set superposition errors (BSSE) were calculated to be --66.81 and -46.99 kJ tool^-1, respectively. Accordingly, the glycine enantiomers can be potentially applied to the chiral recognition in biological and pharmaceutical areas.  相似文献   

13.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   

14.
A high‐level ab initio protocol to compute accurate electron affinities and half‐wave reduction potentials is presented and applied for a series of electron‐acceptor compounds with potential interest in organic electronics and redox flow batteries. The comprehensive comparison between the theoretical and experimental electron affinities not only proves the reliability of the theoretical G3(MP2) approach employed but also calls into question certain experimental measurements, which need to be revised. By using the thermodynamic cycle for the one‐electron attachment reaction A+e?→A?, theoretical estimates for the first half‐wave reduction potential have been computed along the series of electron‐acceptor systems investigated, with maximum deviations from experiment of only 0.2 V. The precise inspection of the terms contributing to the half‐wave reduction potential shows that the difference in the free energy of solvation between the neutral and the anionic species (ΔΔGsolv) plays a crucial role in accurately estimating the electron‐acceptor properties in solution, and thus it cannot be considered constant even in a family of related compounds. This term, which can be used to explain the occasional lack of correlation between electron affinities and reduction potentials, is rationalized by the (de)localization of the additional electron involved in the reduction process along the π‐conjugated chemical structure.  相似文献   

15.
藏药五脉绿绒蒿碱结构和性质的理论研究   总被引:10,自引:0,他引:10  
五脉绿绒蒿碱是一种从藏药五脉绿绒蒿中提取并已确认结构的新的生物碱. 采用密度泛函理论(DFT)和从头算(ab initio)方法, 在HF/6-31G*和B3LYP/6-31G*水平下全优化计算了该化合物的分子几何构型和电子结构; 依据Onsager自恰反应场(SCRF)模型考察了五脉绿绒蒿碱在氯仿、丙酮、二甲亚砜及水等溶剂中的溶剂化作用; 基于气相优化结构进行了B3LYP/6-31G*振动分析与红外光谱计算, 进一步按照统计力学原理求得了298~1500 K温度范围内该化合物的热力学性质. 此外, 还讨论了五脉绿绒蒿碱的分子结构与药效的关系.  相似文献   

16.
Theoretical studies on BCn (n=1–6) clusters are carried out using density functional theory, Møller–Plesset second‐order perturbation theory (MP2), coupled‐cluster calculations including up to triple excitations (CCSD(T)), and higher‐level approaches. All possible isomers depending on the positions of the boron atom are generated and the lowest‐energy isomers are determined for doublet and quartet electronic states. The three potential evolution paths of the clusters are determined as a function of their size. The energetic and electronic consequences for the increased size of structures differ significantly, which leads to representatives of the ground electronic state from different structural groups. The ab initio calculated thermal functions allow enhancements to the available atomization energies and improve the agreement between the calculated and experimental heat content.  相似文献   

17.
The proton‐transfer reaction in a model aromatic Schiff base, salicylidene methylamine (SMA), in the ground and in the lowest electronically‐excited singlet states, is theoretically analyzed with the aid of second‐order approximate coupled‐cluster model CC2, time‐dependent density functional theory (TD‐DFT) using the Becke, three‐parameter Lee–Yang–Parr (B3LYP) functional, and complete active space perturbation theory CASPT2 electronic structure methods. Computed vertical‐absorption spectra for the stable ground‐state isomers of SMA fully confirm the photochromism of SMA. The potential‐energy profiles of the ground and the lowest excited singlet state are calculated and four photophysically relevant isomeric forms of SMA; α, β, γ, and δ are discussed. The calculations indicate two S1/S0 conical intersections which provide non‐adiabatic gates for a radiationless decay to the ground state. The photophysical scheme which emerges from the theoretical study is related to recent experimental results obtained for SMA and its derivatives in the low‐temperature argon matrices (J. Grzegorzek, A. Filarowski, Z. Mielke, Phys. Chem. Chem. Phys. 2011 , 13, 16596–16605). Our results suggest that aromatic Schiff bases are potential candidates for optically driven molecular switches.  相似文献   

18.
《Chemphyschem》2003,4(12):1308-1315
The low‐energy regions of the singlet→singlet, singlet→triplet, and triplet→triplet electronic spectra of 2,2′‐bithiophene are studied using multiconfigurational second‐order perturbation theory (CASPT2) and extended atomic natural orbitals (ANO) basis sets. The computed vertical, adiabatic, and emission transition energies are in agreement with the available experimental data. The two lowest singlet excited states, 11Bu and 21Bu, are computed to be degenerate, a novel feature of the system to be borne in mind during the rationalization of its photophysics. As regards the observed high triplet quantum yield of the molecule, it is concluded that the triplet states 23Ag and 23Bu, separated about 0.4 eV from the two lowest singlet excited states, can be populated by intersystem crossing from nonplanar singlet states.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号